125 resultados para Elliptic Equations
Resumo:
We propose a new set of input voltage equations (IVEs) for independent double-gate MOSFET by solving the governing bipolar Poisson equation (PE) rigorously. The proposed IVEs, which involve the Legendre's incomplete elliptic integral of the first kind and Jacobian elliptic functions and are valid from accumulation to inversion regimes, are shown to have good agreement with the numerical solution of the same PE for all bias conditions.
Resumo:
Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Peclet number 0 <= Pe <= 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.
Resumo:
The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).
Resumo:
In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.
Resumo:
We generalize the method of A. M. Polyakov, Phys. Rev. E 52, 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension Eur. Phys. J.B 9, 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Karman-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.
Resumo:
This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.
Resumo:
The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.
Resumo:
In the paper, the well known Adomian Decomposition Method (ADM) is modified to solve the parabolic equations. The present method is quite different than the numerical method. The results are compared with the existing exact or analytical method. The already known existing Adomian Decomposition Method is modified to improve the accuracy and convergence. Thus, the modified method is named as Modified Adomian Decomposition Method (MADM). The Modified Adomian Decomposition Method results are found to converge very quickly and are more accurate compared to ADM and numerical methods. MADM is quite efficient and is practically well suited for use in these problems. Several examples are given to check the reliability of the present method. Modified Adomian Decomposition Method is a non-numerical method which can be adapted for solving parabolic equations. In the current paper, the principle of the decomposition method is described, and its advantages are shown in the form of parabolic equations. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Resumo:
The periodic 3D Navier-Stokes equations are analyzed in terms of dimensionless, scaled, L-2m-norms of vorticity D-m (1 <= m <= infinity). The first in this hierarchy, D-1, is the global enstrophy. Three regimes naturally occur in the D-1-D-m plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime 1]; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes.
Resumo:
We show, by using direct numerical simulations and theory, how, by increasing the order of dissipativity (alpha) in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case alpha -> infinity U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of alpha greater than a crossover value alpha(crossover). We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows.
Resumo:
In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.
Resumo:
Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.