354 resultados para Electron-phonon
Resumo:
An interface between two polar semiconductors can support a whole new family of seven type of optic-phonon magnetoplasmons. Six of these arise due to nonequivalence property of propagation introduced by the magnetic field in Voigt configuration and one mainly due to finite plasma density ratio at the interface.
Resumo:
A twenty stage electron multiplier using aluminium as dynode material is described. When operated in DC mode, very stable gains approaching 106 were obtained with input currents of the order of 10-12 A, even after repeated exposures to the atmospheres.
Resumo:
Dielectric studies of the glassy crystalline states of cyclohexanol, cyclohexanone, and camphor obtained by upercooling the plastic crystalline phase demonstrate the presence of characteristic a- and p-relaxations. The parameters of the a-relaxation fit the Vogel-Tammann-Fulcher (VTF) equation. ESR spin-probe studies of the glassy crystalline phase of cyclohexanol show that there is a marked decrease in the correlation time above the glasslike transition temperature. The present studies suggest the similarity between glassy crystals having long-range orientational disorder and glasses which are known to betra nslationally disordered.
Resumo:
Electronic and magnetic properties of Ln1�xSrxCoO3 (Ln = Pr, Nd, Sm, Eu, and Gd) systems show that above a critical value of x, the d electrons become itinerant while the materials become ferromagnetic at low temperatures. The ferromagnetic component increases with increase in x and decrease in temperature. The Curie temperature increases with x and decreases with decrease in the size of the rare-earth ion. Incorporation of Ba2+ in LaCoO3 favors itinerant electron ferromagnetism relative to Sr2+ while Ca2+ is less favorable than Sr2+.
Resumo:
An interface between two polar semiconductors in parallel magnetic field geometry can support at most four types of surface oscillations; the actual number (less-than-or-equals, slant4), however, depends on the strength of the magnetic field. The interface effects on these relevant ranges of magnetic field are analysed in detail.
Resumo:
A linear excitation of electromagnetic modes at frequencies (n + ı89 in a plasma through which two electron beams are contra-streaming along the magnetic field is investigated. This may be a source of the observed {cote emissions at auroral latitudes.
Resumo:
The computations of Flahive and Quinn1 of the dispersion curves of low frequency degenerate surface (DS) modes propagating along the magnetic field in an electron-hole plasma are extended to higher values of the wavenumber. We find that beyond a certain value of the wavenumber the DS mode re-enters the allowed region of surface wave propagation and tends to an asymptotic frequency ωR (<ωLH). These low frequency resonances of an electron-hole plasma are discussed with reference to the experimental observations.
Resumo:
Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
The polymer-amorphous carbon composites show a negative magnetoconductance which varies as B-2 at low fields which changes to B-1/2 at sufficiently high fields. The magnetoconductance gives the evidence of electron-electron interaction in composites whose conductivity follows thermal fluctuation induced tunneling and falls in the critical regime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Electron paramagnetic resonance (EPR) studies and magnetic measurements were carried out on single crystals of multiferroic DyMnO3 in hexagonal as well as orthorhombic structures. The interesting effect of strontium dilution on the frustrated antiferromagnetism of DyMnO3 is also probed using EPR. The line shapes are fitted to broad Lorentzian in the case of pure DyMnO3 and to modified Dysonian in the case of Dy0.5Sr0.5MnO3. The linewidth, integrated intensity, and geff derived from the signals are analyzed as a function of temperature. The results of magnetization measurements corroborate with EPR results. Our study clearly reveals the signature of frustrated magnetism in pure DyMnO3 systems. It is found that antiferromagnetic correlations in these systems persist even above the transition. Moreover, a spin-glass-like behavior in Dy0.5Sr0.5MnO3 is indicated by a steplike feature in the EPR signals at low fields.
Resumo:
We have measured near normal incidence far-infrared (FIR) reflectivity spectra of a single crystal of TbMnO3 from 10 K to 300 K in the spectral range of 50 cm(-1)-700 cm(-1). Fifteen transverse optic (TO) and longitudinal optic (LO) modes are identified in the imaginary part of the dielectric function epsilon(2)(omega) and energy loss function Im(-1/epsilon(omega)), respectively. Some of the observed phonon modes show anomalous softening below the magnetic transition temperature T-N (similar to 46 K). We attribute this anomalous softening to the spin-phonon coupling caused by phonon modulation of the superexchange integral between the Mn3+ spins. The effective charge of oxygen (Z(O)) calculated using the measured LO-TO splitting increases below TN.
Resumo:
We report the quadratic nonlinearity of one- and two-electron oxidation products of the first series of transition metal complexes of meso-tetraphenylporphyrin (TPP). Among many MTPP complexes, only CuTPP and ZnTPP show reversible oxidation/reduction cycles as seen from cyclic voltammetry experiments. While centrosymmetric neutral metalloporphyrins have zero first hyperpolarizability, β, as expected, the cation radicals and dications of CuTPP and ZnTPP have very high β values. The one- and two-electron oxidation of the MTPPs leads to symmetry-breaking of the metal−porphyrin core, resulting in a large β value that is perhaps aided in part by contributions from the two-photon resonance enhancement. The calculated static first hyperpolarizabilities, β0, which are evaluated in the framework of density functional theory by a coupled perturbed Hartree−Fock method, support the experimental trend. The switching of optical nonlinearity has been achieved between the neutral and the one-electron oxidation products but not between the one- and the two-electron oxidation products since dications that are electrochemically reversible are unstable due to the formation of stable isoporphyrins in the presence of nucleophiles such as halides.
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the effects of energy quantization on different single-electron transistor (SET) circuits (logic inverter, current-biased circuits, and hybrid MOS-SET circuits) are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantizationmainly increases the Coulomb blockade area and Coulomb blockade oscillation periodicity, and thus, affects the SET circuit performance. A new model for the noise margin of the SET inverter is proposed, which includes the energy quantization effects. Using the noise margin as a metric, the robustness of the SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termed as ``quantization threshold'') that an SET inverter can withstand before its noise margin falls below a specified tolerance level. The effects of energy quantization are further studiedfor the current-biased negative differential resistance (NDR) circuitand hybrid SETMOS circuit. A new model for the conductance of NDR characteristics is also formulated that explains the energy quantization effects.