118 resultados para Electron microscopy (TEM and SEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low cost eco-friendly method for the synthesis of gold nanoparticles (AuNPs) using guar gum (GG) as a reducing agent is reported. The nanoparticles obtained are characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on these results, a potential mechanism for this method of AuNPs synthesis is discussed. GG/AuNPs nanocomposite (GG/AuNPs NC) was exploited for optical sensor for detection of aqueous ammonia based on surface plasmon resonance (SPR). It was found to have good reproducibility, response times of similar to 10 s and excellent sensitivity with a detection limit of 1 ppb (parts-per-billion). This system allows the rapid production of an ultra-low-cost GG/AuNPs NC-based aqueous ammonia sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corona discharge is recognized as one of the mechanisms that can influence the surface hydrophobicity of Silicone Rubber (SR) because of the chemical changes that occur on its surface. In this study SR samples were exposed to positive and negative DC corona for 25 and 50 hours using a needle-plane electrode system. Hydrophobicity changes were monitored using a sessile drop contact angle measurement facility. The physical changes on the surface were studied using Scanning Electron Microscopy (SEM) and surface roughness measurements. The effect of positive dc corona was found to be different from that of negative dc corona. Significant surface degradation and loss of hydrophobicity was found in the case of negative dc corona exposed samples. Significant improvement in the above mentioned properties were obtained by adding small quantities of nSIL into the SR matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Towards fundamental studies and potential applications, achieving precise control over the generation of defects in pure ZnO nanocrystals has been always intriguing. Herein, we explored the rote of spectator ions (Co2+ and Ni2+) in influencing the functional properties of ZnO nanocrystals. The crystalline quality, phase purity, and composition of as-prepared samples were thoroughly established by powder X-ray diffraction, electron microscopy (TEM and STEM), and by Raman and X-ray photoelectron spectroscopies (XPS). Despite the presence of Co2+ and Ni2+ ions in the reaction mixture, STEM-energy dispersive spectroscopy (EDS), XPS analysis, and inductively-coupled plasma mass spectrometry (ICP-MS) revealed that the ZnO nanocrystals formed are dopant-free. Even so, their luminescence and magnetic properties were substantially different from those of pure ZnO nanocrystals synthesized using a similar methodology. We attribute the origin of these properties to the defects associated with ZnO nanocrystals generated under different but optimized conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanochemically activated reactants were found to facilitate the synthesis of fine powders comprising 200-400 nm range crystallites of BaBi4Ti4O15 at a significantly lower temperature (700 A degrees C) than that of solid-state reaction route. Reactants (CaCO3, Bi2O3 and TiO2) in stoichiometric ratio were ball milled for 48 h to obtain homogeneous mixture. The evolution of the BaBi4Ti4O15 phase was systematically followed using X-ray powder diffraction (XRD) technique. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to probe its structural and microstructural details. The electron diffraction studies established the presence of correlated octahedral rotations and associated long-range polar ordering. High-resolution TEM imaging nevertheless revealed structural inhomogeneities leading to intergrowth defects. Dense BaBi4Ti4O15 ceramics with an average grain size of 0.9 mu m were fabricated using mechanochemically assisted synthesized powders at relatively low temperature (1000 A degrees C). The effect of grain size on the dielectric and relaxor behaviour of BaBi4Ti4O15 ceramics was investigated. Fine-grained ceramics (average grain size similar to 0.9 mu m) showed higher diffusion in phase transition, lower temperature of phase transition, lower Vogel-Fulcher freezing temperature and higher activation energy for the polarization reversal than those for coarse-grained ceramics (average grain size similar to 7 mu m) fabricated via the conventional solid-state reaction route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found approximate to 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale materials show different properties compared to bulk materials. Due to the size dependent properties the nanoscale materials have potential applications in industry. In this paper the size dependent magnetic properties of Nd0.7Ca0.3MnO3 nanomanganite have been investigated. Nd0.7Ca0.3MnO3 nanoparticles were prepared by low temperature sol-gel method. X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and EDAX techniques were used to understand the structure, grain size and composition. Nanoparticles prepared were of the sizes 15 nm, 19 nm and 25 nm respectively. SQUID magnetometer was used to study the magnetic behavior of the nanoparticles. Field cooled (FC) and zero field cooled (ZFC) magnetization of all the nanosamples with respect to temperature was studied and compared. We have observed drastic changes in magnetic properties of 15 nm particles compared to the other nanoparticles. The `charge order peak' was seen to have disappeared in 15 nm particles while it was present in the other nanoparticles. All the nano particles exhibit superparamagnetism whose blocking temperature decreases as a function of decreasing particle size. The possible reasons for the influence of the particle size on the magnetic properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ho3+ (0.25-7 mol%) doped Sr2CeO4 nanophosphors were synthesized by solution combustion method using urea as fuel. The structural properties of the nanophosphors were investigated by powder X-ray diffraction studies (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. UV-Visible and photoluminescence (PL) spectroscopic techniques were used for analysing the optical properties of the nanoparticles. PXRD and TEM results revealed the formation of Sr2CeO4: Ho3+ nanocrystalline particles with orthorhombic crystal structure. From the UV-Vis studies the optical band gap energy found to decrease from 5.9 to 5.74 eV with increase in dopant concentration. The PL spectra exhibit the broad excitation band from 200 to 400 nm which concurs well with the commercial near UV LED. The PL spectra vary with the dopant content due to energy transfer from the host to the activator. In this present work we demonstrate that color tuning of phosphor can be achieved by merely varying the Ho3+ ions concentration. The CIE and CCT chromaticity coordinates suggests Sr2CeO4: Ho3+ nanophosphors may be potentially applicable as promising single - phased phosphors for lighting applications. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous Silicon Germanium (a-SiGe) thin films of 500 nm thickness are deposited on silicon substrates using Plasma Enhanced Chemical Vapour Deposition (PECVD). To obtain polycrystalline nature of films, thermal annealing is done at various temperature (450-600 degrees C) and time (1-10 h). The surface morphology of the pre- and post-annealed films is investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystallographic structure of the film is obtained by X-ray diffraction method. Raman spectroscopy is carried out to quantify the Ge concentration and the degree of strain relaxation in the film. Nano-indentation is performed to obtain the mechanical properties of the film. It is found that annealing reduces the surface roughness of the film and increases the Ge concentration in the film. The grain size of the film increases with increase in annealing temperature. The grain size is found to decrease with increase in annealing time up to 5 h and then increased. The results show that 550 degrees C for 5 h is the critical annealing condition for variation of structural and mechanical properties of the film. Recrystallization starts at this condition and results in finer grains. An increase in hardness value of 7-8 GPa has been observed. Grain growth occurs above this critical annealing condition and degrades the mechanical properties of the film. The strain in the film is only relaxed to about 55% even for 10 h of annealing at 600 degrees C. Transmission Electron Microscopy (TEM) observations show that the strain relaxation occurs by forming misfit dislocations and these dislocations are confined to the SiGe/Si interface. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cu2SnS3 thin films were deposited by a facile sot-gel technique followed by annealing. The annealed films were structurally characterized by grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). The crystal structure was found to be tetragonal with crystallite sizes of 2.4-3 nm. Texture coefficient calculations from the GIXRD revealed the preferential orientation of the film along the (112) plane. The morphological investigations of the films were carried out using field emission scanning electron microscopy (FESEM) and the composition using electron dispersive spectroscopy (EDS). The temperature dependent current, voltage characteristics of the Cu2SnS3/AZnO heterostructure were studied. The log I-log V plot exhibited three regions of different slopes showing linear ohmic behavior and non-linear behavior following the power law. The temperature dependent current voltage characteristics revealed the variation in ideality factor and barrier height with temperature. The Richardson constant was calculated and its deviation from the theoretical value revealed the inhomogeneity of the barrier heights. Transport characteristics were modeled using the thermionic emission model. The Gaussian distribution of barrier heights was applied and from the modified Richardson plot the value of the Richardson constant was found to be 47.18 A cm(-2) K-2. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel flexible alloy substrate (Phynox, 50 mm thick) was used for the synthesis of zinc oxide (ZnO) nanorods via a low-temperature solution growth method. The growth of ZnO nanorods was observed over a low temperature range of 60-90 degrees C for a growth duration of 4 hours. The as-synthesized nanorods were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) for their morphology, crystallinity, microstructure and composition. The as-grown ZnO nanorods were observed to be relatively vertical to the substrate. However, the morphology of the ZnO nanorods in terms of their length, diameter and aspect ratio was found to vary with the growth temperature. The morphological variation was mainly due to the effects of the various relative growth rates observed at the different growth temperatures. The growth temperature influenced ZnO nanorods were also analyzed for their wetting (either hydrophobic or hydrophilic) properties. After carrying out multiple wetting behaviour analyses, it has been found that the as-synthesized ZnO nanorods are hydrophobic in nature. The ZnO nanorods have potential application possibilities in self-cleaning devices, sensors and actuators as well as energy harvesters such as nanogenerators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of Cu2SnS3 (CTS) were deposited by the facile solution processed sol-gel route followed by a low-temperature annealing. The Cu-Sn-thiourea complex formation was analysed using Fourier Transform Infrared spectrophotometer (FTIR). The various phase transformations and the deposition temperature range for the initial precursor solution was determined using Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). X-Ray Diffraction (XRD) studies revealed the tetragonal phase formation of the CTS annealed films. Raman spectroscopy studies further confirmed the tetragonal phase formation and the absence of any deterioratory secondary phases. The morphological investigations and compositional analysis of the films were determined using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) respectively. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 1.3 nm. The absorption coefficient was found to be 10(4) cm(-1) and bandgap 1.3 eV which qualifies CTS to be a potential candidate for photovoltaic applications. The refractive index, extinction coefficient and relative permittivity of the film were measured by Spectroscopic ellipsometry. Hall effect measurements, indicated the p type nature of the films with a hole concentration of 2 x 10(18) cm(-3), electrical conductivity of 9 S/cm and a hole mobility of 29 cm(2)/V. The properties of CTS as deduced from the current study, present CTS as a potential absorber layer material for thin film solar cells. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two shape-persistent covalent cages (CC1(r) and CC2(r)) have been devised from triphenyl amine-based trialdehydes and cyclohexane diamine building blocks utilizing the dynamic imine chemistry followed by imine bond reduction. The cage compounds have been characterized by several spectroscopic techniques which suggest that CC1(r) and CC2(r) are 2+3] and 8+12] self-assembled architectures, respectively. These state-of-the-art molecules have a porous interior and stable aromatic backbone with multiple palladium binding sites to engineer the controlled synthesis and stabilization of ultrafine palladium nanoparticles (PdNPs). As-synthesized cage-embedded PdNPs have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). Inductively coupled plasma optical emission spectrometry reveals that Pd@CC1(r) and Pd@CC2(r) have 40 and 25 wt% palladium loading, respectively. On the basis of TEM analysis, it has been estimated that as small as similar to 1.8 nm PdNPs could be stabilized inside the CC1(r), while larger CC2(r) could stabilize similar to 3.7 nm NPs. In contrast, reduction of palladium salts in the absence of the cages form structure less agglomerates. The well-dispersed cage-embedded NPs exhibit efficient catalytic performance in the cyanation of aryl halides under heterogeneous, additive-free condition. Moreover, these materials have excellent stability and recyclability without any agglomeration of PdNPs after several cycles.