321 resultados para Electromagnetic wave polarisation
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
A new approach for describing dislocations and other topological defects in crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented. Quantitative calculations are discussed in brief for the order parameter profiles, the atomic configuration and the free energy of a screw dislocation with Burgers vector b = (a/2, a/2,a/2 ) in a bcc solid. Our results for the free energy of the dislocation in a crystal of sizeR, when expressed as (λb 2/4π) ln (αR/|b|) whereλ is the shear elastic constant, yield, for example, the valueα ⋍ 1·85 for sodium at its freezing temperature (371°K). The density distribution in the presence of the dislocation shows that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order parameter theory incorporating thermal effects.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.
Resumo:
Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.
Resumo:
The design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex heterostructures with a basic unit cell of type (n) under bar (+)/pi/(p) under bar (+). We present an analysis of double barrier (n) under bar (+)/pi/(p) under bar (+) mid wave infrared (x = 0.3) HgCdTe detector for near room temperature operation using numerical computations. The present work proposes an accurate and generalized methodology in terms of the device design, material properties, and operation temperature to study the effects of position dependence of carrier concentration, electrostatic potential, and generation-recombination (g-r) rates on detector performance. Position dependent profiles of electrostatic potential, carrier concentration, and g-r rates were simulated numerically. Performance of detector was studied as function of doping concentration of absorber and contact layers, width of both layers and minority carrier lifetime. Responsivity similar to 0.38 A W-1, noise current similar to 6 x 10(-14) A/Hz(1/2) and D* similar to 3.1 x 10(10)cm Hz(1/2) W-1 at 0.1 V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. (C) 2010 American Institute of Physics. doi:10.1063/1.3463379]
Resumo:
We calculate the string tension and 0++ and 2++ glueball masses in pure gauge QCD using an improved lattice action. We compare various smearing methods, and find that the best glueball signal is obtained using smeared Wilson loops of a size of about 0.5 fm. Our results for mass ratios m0++/√σ=3.5(3) and m2++/m0++=1.6(2) are consistent with those computed with the simple plaquette action.
Resumo:
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
Consideration is given to a 25-foot long Q-band (8 mm) confocal, zoned dielectric lens beam waveguide. Numerical expressions for the axial and radial fields are presented. The experimental set-up consisted of uniformly spaced zoned dielectric lenses, a transmitting horn and a receiving horn. It was found that: (1) the wave beam is reiterated when confocal, zoned dielectric lenses act as phase transformers in place of smooth surfaced transformers in beam waveguides; (2) the axial field is oscillatory near the source and the oscillation persists for about 25 cm from the source; (3) the oscillation disappears after one lens is used; (4) higher order modes with higher attenuation rates die out faster than fundamental modes; (5) phase transformers do not alter beam modes; (6) without any lens the beam cross-section broadens significantly in the Z-direction; (7) with one lens the beam exhibits the reiteration phenomenon; and (8) inserting a second lens on the axial and cross-sectional field distribution shows further the reiteration principle.