110 resultados para EUROPIUM IONS
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Impedance spectroscopic studies on modified phospho-vanadate glasses containing SO42- ions have been carried out over wide range of frequency. Modulated DSC studies suggest that the addition of alkali salt makes the glass less rigid and more fragile. The frequency dependent impedance data has been used to calculate d.c conductivity and activation energies. These values are comparable with the other ionic liquids. The conductivity and relaxation phenomenon was rationalized using universal a.c conductivity power law and modulus formalism. The activation energies for relaxation mechanism was also determined using imaginary parts of electrical modulus peaks which were close to those of the d.c conductivity implying the involvement of similar energy barriers in both the processes. Kohlrausch-William-Watts (KWW) stretched exponent beta, is temperature insensitive and power law (s) exponent is temperature dependent. The enhanced conductivity in these glasses is attributed to the depolymerised structure in which migration of Na+ ions proceeds in an expanded network comprising SO42- ions in the interstitials. The effect of structure on activation energy is well supported by abinitio DFT computations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In the past four decades, CeO2 has been recognized as an attractive material in the area of auto exhaust catalysis because of its unique redox properties. In the presence of CeO2, the catalytic activity of noble metals supported on Al2O3 is enhanced due to higher dispersion of noble metals in their ionic form. In the last few years, we have been exploring an entirely new approach of dispersing noble metal ions on CeO2 and TiO2 matrices for redox catalysis. In this study, the dispersion of noble metal ions by solution combustion as well as other methods over CeO2 and TiO2 resulting mainly in Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-ySnxMyO2-delta, Ce1-x-yFexMyO2-delta, Ce1-x-yZrxMyO2-delta and Ti1-xMxO2-delta (M = Pd, Pt, Rh and Ru) catalysts, the structure of these materials, their catalytic properties toward different types of catalysis, structure-property relationships and mechanisms of catalytic reactions are reviewed. In these catalysts, noble metal ions are incorporated into a substrate matrix to a certain limit in a solid solution form. Lower valent noble metal-ion substitution in CeO2 and TiO2 creates noble metal ionic sites and oxide ion vacancies that act as adsorption sites for redox catalysis. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) have been found to be catalytically more active than conventional nanocrystalline noble metal catalysts dispersed on oxide supports.
Resumo:
Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In an attempt to develop new coloured inorganic oxides, we have investigated the substitution of 3d transition-metal ions in LiMgBO3 host where Mg-II has a trigonal bipyramidal (TBP) oxygen coordination]. We find that single-phase materials are formed for (LiMg1-xCoxBO3)-B-II (0 < x 1.0), (LiMg1-xNixBO3)-B-II (0 < x 0.1), (LiMg1-xCuxBO3)-B-II (0 < x 0.1) and also (Li1-xMg1-xFexBO3)-B-III (0 < x 0.1) of which the Co-II and Ni-II derivatives are strongly coloured, purple-blue and beige-red, respectively, thus identifying TBP CoO5 and NiO5 as new chromophores for these colours.