259 resultados para Dimeric tin sulfides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of pseudocumene oxidation in the vapor phase with tin vanadate as catalyst have been studied over the following ranges of the variables: Oxygen concentration, 0.909 to 2.857 mole/m3; pseudocumene concentration, 0.071 to 0.125 mole/m3; temperature, 260 to 320°C; space time, 22.5 to 90 × 104 g. catalyst/mole sec. Oxidation-reduction models have been found to describe the kinetics adequately. The mechanism is found to remain the same throughout the temperature range covered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complexes of 2,6-dimethylpyridine 1-oxide with lanthanide iodides of the formulaeLn(2,6-LTNO)5I3 whereLn=La, Tb and Yb,Ln(2,6-LTNO)4I3 whereLn=Pr and Nd and Er(2,6-LTNO)4.5I3 have been prepared and characterised by chemical analysis, infrared and conductance studies. Infrared and conductance data have been interpreted in terms of dimeric (or polymeric) structures involving bridging amine oxide groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a series of seeondary- and tertiary-amino-substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert-amino groups in benzylamine-based diselenides by sec-amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N-propyl- and N-isopropylamino-substituted diselenides are 8-18 times more active than the corresponding N,N-dipropyl- and N,N-diisopropylamine-based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec-amino-substituted disclenides is similar to that of the tert-amine-based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx-like activities. it is observed that the sec-amino groups are better than the tert-amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol-exchange reactions in the selenenyl sulfides derived from sec-amine-based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec-amine-based compounds are more stable toward further reactions with peroxides than their tert-amine-based analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to unravel the role of conserved histidine residues in the structure-function of sheep liver cytosolic serine hydroxymethyltransferase (SHMT), three site-specific mutants (H134N, H147N, and H150N) were constructed and expressed, H134N and H147N SHMTs had K-m values for L-serine, L-allo-threonine and beta-phenylserine similar to that of wild type enzyme, although the k(cat) values were markedly decreased, H134N SHMT was obtained in a dimeric form with only 6% of bound pyridoxal 5'-phosphate (PLP) compared with the wild type enzyme, Increasing concentrations of PLP (up to 500 mu M) enhanced the enzyme activity without changing its oligomeric structure, indicating that His-134 may be involved in dimer-dimer interactions, H147N SHMT was obtained in a tetrameric form but with very little PLP (3%) bound to it, suggesting that this residue was probably involved in cofactor binding, Unlike the wild type enzyme, the cofactor could be easily removed by dialysis from H147N SHMT, and the apoenzyme thus formed was present predominantly in the dimeric form, indicating that PLP binding is at the dimer-dimer interface, H150N SHMT was obtained in a tetrameric form with bound PLP, However, the mutant had very little enzyme activity (<2%). The k(cat)/K-m values for L-serine, L-allo-threonine and beta-phenylserine were 80-, 56-, and SS-fold less compared with wild type enzyme, Unlike the wild type enzyme, it failed to form the characteristic quinonoid intermediate and was unable to carry out the exchange of 2-S proton from glycine in the presence of H-4-folate. However, it could form an external aldimine with serine and glycine, The wild type and the mutant enzyme had similar K-d values for serine and glycine, These results suggest that His-150 may be the base that abstracts the alpha-proton of the substrate, leading to formation of the quinonoid intermediate in the reaction catalyzed by SHMT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ALUMINIUM exposure has been shown to result in aggregation of microtubule-associated protein tau in vitro. In the light of recent observations that the native random structure of tau protein is maintained in its monomeric and dimeric states as well as in the paired helical filaments characteristic of Alzheimer's disease, it is likely that factors playing a causative role in neurofibrillary pathology would not drastically alter the native conformation of tau protein. We have studied the interaction of tau protein with aluminium using circular dichroism (CD) and 27(Al) NMR spectroscopy. The CD studies revealed a five-fold increase in the observed ellipticity of the tau-aluminium assembly. The increase in elipticity was not associated with a change in the general conformation of the protein and was most likely due to an aggregation of the tau protein induced by aluminium. Al-27 NMR spectroscopy confirmed the binding of aluminium to tau protein. Hyperphosphorylation of tau in Alzheimer's disease is known to be associated with defective microtubule assembly in this condition. Abnormally phosphorylated tau exists in a polymerized form in the paired helical filaments (PHF) which constitute the neurofibrillary tangles found in Alzheimer's disease. While it is hypothesized that its altered biophysical characteristics render abnormally phosphorylated tau resistant to proteolysis, causing the formation of stable deposits,the sequence of events resulting in the polymerization of tau are little understood, as are the additional factors or modifications required for tills process. Based on the results of our spectroscopic studies, a model for the sequence of events occurring in neurofibrillary pathology is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium. We present the crystal structure of the full-length and sole cAMP phosphodiesterase, Rv0805, found in M. tuberculosis, whose orthologs are present only in /the genomes of slow growing and pathogenic mycobacteria. The dimeric core catalytic domain of Rv0805 adopts a metallophosphoesterase fold, and the C-terminal region builds the active site and contributes to multiple substrate utilization.Localization of Rv0805 to the cell wall is dependent on its C terminus, and expression of either wild type or mutationally inactivated Rv0805 in M. smegmatis alters cell permeability to hydrophobic cytotoxic compounds. Rv0805 may therefore play a key role in the pathogenicity of mycobacteria, not only by hydrolyzing bacterial cAMP, but also by moonlighting as a protein that can alter cell wall functioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter explores the structural behavior of nanocrystalline tin mono sulfide (SnS) structures with respect to temperature (100-600 K). These studies emphasize that the structural properties of SnS nanocrystalline structures depend on the surrounding temperature. The lattice parameters of SnS nanocrystals slightly varied like their microstructures with the increase of temperature. These changes strongly influence the optical properties of SnS nanostructures. On the other hand, the structures exhibited higher strain (similar to 0.44%) than that of microstructured (0.3%) and bulk (0.12%) counterparts. The observed results are discussed under the light of existing concepts and reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 Å, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34–37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in 2H, 13C, and 15N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435–37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Particle-based agglutination tests consisting of receptors grafted to colloidal microparticles are useful for detecting small quantities of corresponding ligands of interest in fluid test samples, but detection limits of such tests are limited to a certain concentration and it is most desirable to lower the detection limits and to enhance the rate of recognition of ligands. METHODS: A mixture of receptor-coated colloidal microparticles and corresponding ligand was sandwiched between 2 indium tin oxide-coated glass plates. Electrohydrodynamic drag from an alternating-current electric field applied perpendicular to the plates increased the local concentration of the colloidal particles, improving the chances of ligand-receptor interaction and leading to the aggregation of the colloidal particles. RESULTS: With this technique the sensitivity of the ligand-receptor recognition was increased by a factor as large as 50. CONCLUSIONS: This method can improve the sensitivity of particle-based agglutination tests used in immuno-assays and many other applications such as immunoprecipitation and chemical, sniffing. (C) 2007 American Association for Clinical Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids are amphiphilic molecules that are composed of hydrophilic and hydrophobic regions. A typical membranous aggregate (vesicles, water-filled lipid nanospheres) is formed upon the self-organization of lipids in water from a diverse collection of amphiphiles producing a dynamic supramolecular structure that shows phase behavior and ordering as required for specific biological functions. The determination of various physical properties of lipid aggregates is the key to determining structure-function relationships. Over the years, we have designed and synthesized a wide variety of lipid molecular systems for the investigation of their membrane-forming properties and have used them for purposes such as gene delivery and enzyme activation. In this feature article, we focus on our work on various types of lipids including ion-paired amphiphiles, cholesterol-based lipids, aromatic lipids, macrocyclic lipids containing disulfide tethers; cationic dimeric lipids, and so forth. The emphasis is oil experimental design and bottom-line conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thymidylate synthase (TS), a dimeric enzyme, forms large soluble aggregates at concentrations of urea (3.3-5 M), well below that required for complete denaturation, as established by fluorescence and size-exclusion chromatography. In contrast to the wild-type enzyme, an engineered mutant of TS (T155C/E188C/C244T), TSMox, in which two subunits are crosslinked by disulfide bridges between residues 155-188' and 188-155', does not show this behavior. Aggregation behavior is restored upon disulfide bond reduction in the mutant protein, indicating the involvement of interface segments in forming soluble associated species. Intermolecular disulfide crosslinking has been used as a probe to investigate the formation of larger non-native aggregates. The studies argue for the formation of large multimeric species via a sticky patch of polypeptide from the dimer interface region that becomes exposed on partial unfolding. Covalent reinforcement of relatively fragile protein-protein interfaces may be a useful strategy in minimizing aggregation of non-native structures in multimeric proteins.