190 resultados para Diffusion flame


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents computational and experimental results on a new burner configuration with a mild combustion concept with heat release rates up to 10 MW/m(3). The burner configuration is shown to achieve mild combustion by using air at ambient temperature at high recirculation rates (similar to250%-290%) both experimentally and computationally. The principal features of the configuration are: (1) a burner with forward exit for exhaust gases; (2) injection of gaseous fuel and air as multiple, alternate, peripheral highspeed jets at the bottom at ambient temperature, thus creating high enough recirculation rates of the hot combustion products into fresh incoming reactants; and (3) use of a suitable geometric artifice-a frustum of a cone to help recirculation. The computational studies have been used to reveal the details of the flow and to optimize the combustor geometry based on recirculation rates. Measures, involving root mean square temperature fluctuations, distribution of temperature and oxidizer concentration inside the proposed burner, and a classical turbulent diffusion jet flame, are used to distinguish between them quantitatively. The system, operated at heat release rates of 2 to 10 MW/m(3) (compared to 0.02 to 0.32 MW/m(3) in the earlier studies), shows a 10-15 dB reduction in noise in the mild combustion mode compared to a simple open-top burner and exhaust NOx emission below 10 ppm for a 3 kW burner with 10% excess air. The peak temperature is measured around 1750 K, approximately 300 K lower than the peak temperature in a conventional burner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethyl allyl phosphate (DEAP) monomer has been synthesized, and characterized, using H-1 NMR and direct ionization mass spectrometric (DI-MS) techniques. It was free-radically polymerized to yield the poly(diethyl allyl phosphate) (PDEAP). The direct pyrolysis-mass spectrometric (DP-MS) analysis of the PDEAP revealed that it undergoes thermal degradation to yield mainly the monomer. Utility of PDEAP as a potent flame-retardant additive in polystyrene (PS) and poly(methyl methacrylate) (PMMA) has also been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of superplasticity has been demonstrated in several zirconia-alumina composites. However, the rate controlling mechanism has not yet been unambiguously identified, due to the limited data available on these materials in comparison with 3 mol% yttria stabilized tetragonal zirconia (3YTZ). The limited data on a zirconia-20 wt% alumina (3Y20A) composite suggest that the mechanical characteristics are similar to those of 3YTZ. The present experimental study on 3Y20A reveals the occurrence of diffusion creep. The experimental results are examined critically in terms of dislocation activity and diffusion creep, and their relevance to superplastic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline alpha-alumina was synthesized in an indigenously built ultrasonic flame pyrolysis (UFP) setup. This paper describes the technical aspects of the apparatus and particle formation in the flame. Ultrasonically atomized aluminium nitrate dissolved in methanol-water mixture was pyrolyzed in an oxy-propane flame for yielding nanocrystalline alpha-alumina. The formation of nanophase alumina was confirmed by powder XRD analysis. Scanning electron microscopy (SEM) analysis was carried out to study particulate morphology. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interdiffusion study is conducted in the V-Si system to determine integrated diffusion coefficients of the phases. Activation energy values are calculated from the experiments conducted at different temperatures. The average values are found to be 208, 240 and 141 kJ/mol, respectively, for the V(3)Si, V(5)Si(3) and VSi(2) phases. The low activation energy for the VSi(2) phase indicates very high concentration of defects or the significant contribution from the grain boundary diffusion. The error in calculation of diffusion parameters from a very thin phase layer in a multiphase diffusion couple is discussed. Further the data available in the literature in this system is compared and the problems in the indirect methodology followed previously to calculate the diffusion parameters are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the dynamics of desorption of a polymer molecule which is pulled at one of its ends with force f, trying to desorb it. We assume a monomer to desorb when the pulling force on it exceeds a critical value f(c). We formulate an equation for the average position of the n-th monomer, which takes into account excluded-volume interaction through the blob-picture of a polymer under external constraints. The approach leads to a diffusion equation with a p-Laplacian for the propagation of the stretching along the chain. This has to be solved subject to a moving boundary condition. Interestingly, within this approach, the problem can be solved exactly in the trumpet, stem-flower and stem regimes. In the trumpet regime, we get tau = tau(0)n(d)(2), where n(d) is the number of monomers that have desorbed at the time tau. tau(0) is known only numerically, but for f close to f(c), it is found to be tau(0) similar to f(c)/(f(2/3) - f(c)(2/3)) If one used simple Rouse dynamics, this result would change to tau similar to f(c)n(d)(2)/(f - f(c)). In the other regimes too, one can find exact solution, and interestingly, in all regimes tau similar to n(d)(2). Copyright (C) EPLA, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano ceramic alumina powders are synthesized by solution combustion synthesis using aluminium nitrate as oxidizer and urea as fuel with different fuel to oxidizer ratio. The variation of adiabatic flame temperatures are calculated theoretically for different fuel/oxidizer ratio according to thermodynamic concept and correlated with the observed flame (reaction) temperatures. A ``multi channel thermocouple setup connected to computer interfaced Keithley multi meter 2700'' is used to monitor the thermal events occurring during the process. The combustion products, characterized by XRD, show that the powders are composed of polycrystalline oxides with crystallite size of 32 to 52 nm. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various fuel to oxide ratio has been proposed for the nature of combustion and its correlation with the characteristics of as-synthesized powder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relations for the growth and consumption rates of a layer with finite thickness as an end member and the product phases in the interdiffusion zone are developed. We have used two different methodologies, the diffusion based and the physico-chemical approach to develop the same relations. We have shown that the diffusion based approach is rather straightforward; however, the physico-chemical approach is much more versatile than the other method. It was found that the position of the marker plane becomes vague in the second stage of the interdiffusion process in pure A thin layer/B couple, where two phases grow simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene gas is burnt and the carbon soot particles are thermophoretically collected using a home-built equipment where the fuel air injection and intervention into the 7.5-cm long flame are controlled using three small pneumatic cylinders and computer-driven controllers. The physical and mechanical properties and tribological performance of the collected soot are compared with those of carbon black and diesel soot. The crystalline structures of the nanometric particles generated in the flame, as revealed by high-resolution transmission electron studies, are shown to vary from the flame root to the exhaust. As the particle journeys upwards the flame, through a purely amorphous coagulated phase at the burner nozzle, it leads to a well-defined crystalline phase shell in the mid-flame zone and to a disordered phase consisting of randomly distributed short-range crystalline order at the exhaust. In the mid-flame region, a large shell of radial-columnar order surrounds a dense amorphous core. The hardness and wear resistance as well as friction coefficient of the soot extracted from this zone are low. The mechanical properties characteristics of this zone may be attributed to microcrystalline slip. Moving towards the exhaust, the slip is inhibited and there is an increase in hardness and friction compared to those in the mid-flame zone. This study of the comparison of flame soot to carbon black and diesel soot is further extended to suggest a rationale based on additional physico-chemical study using micro-Raman spectroscopy.