166 resultados para Differential topology
Resumo:
In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.
Resumo:
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Resumo:
High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. This paper proposes a methodology to tackle the problems associated with this type of application. Synchronization of converter switching with load pulses enables the converter to switch at half the load switching frequency. Low switching frequency helps in ensuring safety of HV transformer insulation and reduction of losses due to skin and proximity effect. Phase-modulated series resonant converter with ZVS is used as the power converter.
Resumo:
High voltage power supplies for radar applications are investigated which are subjected to pulsed load with stringent specifications. In the proposed solution, power conversion is done in two stages. A low power-high frequency converter modulates the input voltage of a high power-low frequency converter. This method satisfies all the performance specifications and takes care of the critical aspects of HV transformer.
Resumo:
We present a method for obtaining conjugate, conjoined shapes and tilings in the context of the design of structures using topology optimization. Optimal material distribution is achieved in topology optimization by setting up a selection field in the design domain to determine the presence/absence of material there. We generalize this approach in this paper by presenting a paradigm in which the material left out by the selection field is also utilised. We obtain conjugate shapes when the region chosen and the region left-out are solutions for two problems, each with a different functionality. On the other hand, if the left-out region is connected to the selected region in some pre-determined fashion for achieving a single functionality, then we get conjoined shapes. The utilization of the left-out material, gives the notion of material economy in both cases. Thus, material wastage is avoided in the practical realization of these designs using many manufacturing techniques. This is in contrast to the wastage of left-out material during manufacture of traditional topology-optimized designs. We illustrate such shapes in the case of stiff structures and compliant mechanisms. When such designs are suitably made on domains of the unit cell of a tiling, this leads to the formation of new tilings which are functionally useful. Such shapes are not only useful for their functionality and economy of material and manufacturing, but also for their aesthetic value.
Resumo:
Experiments on Ge15Te85− x Si x glasses (2 ≤ x ≤ 12) using alternating differential scanning calorimetry (ADSC) indicate that these glasses exhibit one glass transition and two crystallization reactions upon heating. The glass transition temperature has been found to increase almost linearly with silicon content, in the entire composition tie-line. The first crystallization temperature (T c1) exhibits an increase with silicon content for x < 5; T c1 remains almost a constant in the composition range 5 < x ≤ 10 and it increases comparatively more sharply with silicon content thereafter. The specific heat change (ΔC p) is found to decrease with an increase in silicon content, exhibiting a minimum at x = 5 (average coordination number, r = 2.4); a continuous increase is seen in ΔC p with silicon concentration above x = 5. The effects seen in the variation with composition of T c1 and ΔC p at x = 5, are the specific signatures of the mean-field stiffness threshold at r = 2.4. Furthermore, a broad trough is seen in the enthalpy change (ΔH NR), which is indicative of a thermally reversing window in Ge15Te85− x Si x glasses in the composition range 2 ≤ x ≤ 6 (2.34 ≤ r ≤ 2.42).
Resumo:
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.
Resumo:
We report two antibodies, scFv 13B1 and MAb PD1.37, against the hinge regions of LHR and TSHR, respectively, which have similar epitopes but different effects on receptor function. While neither of them affected hormone binding, with marginal effects on hormone response, scFv 13B1 stimulated LHR in a dose-dependent manner, whereas MAb PD1.37 acted as an inverse agonist of TSHR. Moreover, PD1.37 could decrease the basal activity of hinge region CAMs, but had varied effects on those present in ECLs, whereas 13B1 was refractory to any CAMs in LHR. Using truncation mutants and peptide phage display, we compared the differential roles of the hinge region cysteine box-2/3 as well as the exoloops in the activation of these two homologus receptors. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, a new three-phase, five-level inverter topology with a single-dc source is presented. The proposed topology is obtained by cascading a three-level flying capacitor inverter with a flying H-bridge power cell in each phase. This topology has redundant switching states for generating different pole voltages. By selecting appropriate switching states, the capacitor voltages can be balanced instantaneously (as compared to the fundamental) in any direction of the current, irrespective of the load power factor. Another important feature of this topology is that if any H-bridge fails, it can be bypassed and the configuration can still operate as a three-level inverter at its full power rating. This feature improves the reliability of the circuit. A 3-kW induction motor is run with the proposed topology for the full modulation range. The effectiveness of the capacitor balancing algorithm is tested for the full range of speed and during the sudden acceleration of the motor.
Resumo:
In this letter, we investigate the circular differential deflection of a light beam refracted at the interface of an optically active medium. We show that the difference between the angles of deviation of the two circularly polarized components of the transmitted beam is enhanced manyfold near total internal reflection, which suggests a simple way of increasing the limit of detection of chiro-optical measurements. (C) 2012 Optical Society of America
Resumo:
We fabricated a reflectance based sensor which relies on the diffraction pattern generated from a bio-microarray where an underlying thin film structure enhances the diffracted intensity from molecular layers. The zero order diffraction represents the background signal and the higher orders represent the phase difference between the array elements and the background. By taking the differential ratio of the first and zero order diffraction signals we get a quantitative measure of molecular binding while simultaneously rejecting common mode fluctuations. We improved the signal-to-noise ratio by an order of magnitude with this ratiometric approach compared to conventional single channel detection. In addition, we use a lithography based approach for fabricating microarrays which results in spot sizes as small as 5 micron diameter unlike the 100 micron spots from inkjet printing and is therefore capable of a high degree of multiplexing. We will describe the real-time measurement of adsorption of charged polymers and bulk refractometry using this technique. The lack of moving parts for point scanning of the microarray and the differential ratiometric measurements using diffracted orders from the same probe beam allows us to make real-time measurements in spite of noise arising from thermal or mechanical fluctuations in the fluid sample above the sensor surface. Further, the lack of moving parts leads to considerable simplification in the readout hardware permitting the use of this technique in compact point of care sensors.
Resumo:
In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Ito form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order gamma = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability properties of the method proposed in this paper are an improvement on the mean-square stability properties of the Milstein method and three stage Milstein methods.
Resumo:
We study zero-sum risk-sensitive stochastic differential games on the infinite horizon with discounted and ergodic payoff criteria. Under certain assumptions, we establish the existence of values and saddle-point equilibria. We obtain our results by studying the corresponding Hamilton-Jacobi-Isaacs equations. Finally, we show that the value of the ergodic payoff criterion is a constant multiple of the maximal eigenvalue of the generators of the associated nonlinear semigroups.