110 resultados para Di-acceptor cyclopropane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {Cd(bpdc)(bpNDI)]4.5H(2)ODMF}(n) (1) has been constructed from a mixed chromophoric system. The -oxo-bridged secondary building unit, {Cd-2(-OCO)(2)}, guides the parallel alignment of bpNDI (N,N-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH(2)=4,4-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative energies of triangular face sharing condensed macro polyhedral carboranes: CB20H18 and C2B19H18+ derived from mono- and di-substitution of carbons in (4) B21H18- is calculated at B3LYP/6-31G* level. The relative energies, H center dot center dot center dot H non-bonding distances, NICS values, topological charge analysis and orbital overlap compatibility connotes the face sharing condensed macro polyhedral mono-carboranes, 8 (4-CB20H18) to be the lowest energy isomer. The di-carba- derivative, (36) 4,4'a-C2B19H18+ with carbons substituted in a different B-12 cage in (4) B21H18- in anti-fashion is the most stable isomer among 28 possibilities. This structure has less non-bonding H center dot center dot center dot H interaction and is in agreement with orbital-overlap compatibility, and these two have the pivotal role in deciding the stability of these clusters. An estimate of the inherent stability of these carboranes is made using near-isodesmic equations which show that CB20H18 (8) is in the realm of the possible. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis is reported of 7-(9H-carbazol-9-yl)-4-methylcoumarin (Cz-Cm), comprising a carbazole donor moiety and a 4-methylcoumarin acceptor unit, for use in a blue organic light-emitting diode. A detailed solid state, theoretical and spectroscopic study was performed to understand the structure-property relationships. The material exhibits deep-blue emission and high photoluminescence quantum yield both in solution and in a doped matrix. A deep-blue electroluminescence emission at 430nm, a maximum brightness of 292cdm(-2) and an external quantum efficiency of 0.4% was achieved with a device configured as follows: ITO/NPD (30nm)/TCTA (20nm)/CzSi(10nm)/10wt% Cz-Cm:DPEPO (10nm)/TPBI (30nm)/LiF (1nm)/Al ITO=indium tin oxide, NPD=N,N-di(1-naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine, TCTA=tris(4-carbazoyl-9-ylphenyl)amine, CzSi=9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, DPEPO=bis2-(diphenylphosphino)phenyl]ether oxide, TPBI=1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alarmone (p)ppGpp regulates transcription, translation, replication, virulence, lipid synthesis, antibiotic sensitivity, biofilm formation, and other functions in bacteria. Signaling nucleotide cyclic di-GMP (c-di-GMP) regulates biofilm formation, motility, virulence, the cell cycle, and other functions. In Mycobacterium smegmatis, both (p) ppGpp and c-di-GMP are synthesized and degraded by bifunctional proteins Rel(Msm) and DcpA, encoded by rel(Msm) and dcpA genes, respectively. We have previously shown that the Delta rel(Msm) and Delta dcpA knockout strains are antibiotic resistant and defective in biofilm formation, show altered cell surface properties, and have reduced levels of glycopeptidolipids and polar lipids in their cell wall (K. R. Gupta, S. Kasetty, and D. Chatterji, Appl Environ Microbiol 81:2571-2578, 2015, http://dx.doi.org/10.1128/AEM.03999-14). In this work, we have explored the phenotypes that are affected by both (p) ppGpp and c-di-GMP in mycobacteria. We have shown that both (p) ppGpp and c-di-GMP are needed to maintain the proper growth rate under stress conditions such as carbon deprivation and cold shock. Scanning electron microscopy showed that low levels of these second messengers result in elongated cells, while high levels reduce the cell length and embed the cells in a biofilm-like matrix. Fluorescence microscopy revealed that the elongated Delta rel(Msm) and Delta dcpA cells are multinucleate, while transmission electron microscopy showed that the elongated cells are multiseptate. Gene expression analysis also showed that genes belonging to functional categories such as virulence, detoxification, lipid metabolism, and cell-wall-related processes were differentially expressed. Our results suggests that both (p) ppGpp and c-di-GMP affect some common phenotypes in M. smegmatis, thus raising a possibility of cross talk between these two second messengers in mycobacteria. IMPORTANCE Our work has expanded the horizon of (p) ppGpp and c-di-GMP signaling in Gram-positive bacteria. We have come across a novel observation that M. smegmatis needs (p) ppGpp and c-di-GMP for cold tolerance. We had previously shown that the Delta rel(Msm) and Delta dcpA strains are defective in biofilm formation. In this work, the overproduction of (p) ppGpp and c-di-GMP encased M. smegmatis in a biofilm-like matrix, which shows that both (p) ppGpp and c-di-GMP are needed for biofilm formation. The regulation of cell length and cell division by (p) ppGpp was known in mycobacteria, but our work shows that c-di-GMP also affects the cell size and cell division in mycobacteria. This is perhaps the first report of c-di-GMP regulating cell division in mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge-transfer (CT) excitations are essential for photovoltaic phenomena in organic solar cells. Owing to the complexity of molecular geometries and orbital coupling, a detailed analysis and spatial visualisation of CT processes can be challenging. In this paper, a new detail-oriented visualisation scheme, the particle-hole map (PHM), is applied and explained for the purpose of spatial analysis of excitations in organic molecules. The PHM can be obtained from the output of a time-dependent density-functional theory calculation with negligible additional computational cost, and provides a useful physical picture for understanding the origins and destinations of electrons and holes during an excitation process. As an example, we consider intramolecular CT excitations in Diketopyrrolopyrrole-based molecules, and relate our findings to experimental results.