127 resultados para Cosmetic dye
Resumo:
Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I4(1)/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2-CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol-gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2-10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping. Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2-CNT nanocomposite and TEM image of the TiO2-CNT nanocomposite.
Resumo:
In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10-100 mu l was quantified in situ as a function of applied voltage from 10 to 90 V in a series of 2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol).
Resumo:
Inhibition of electron-hole pair recombination is the most desirable solution for stimulating photocatalytic activity in semiconductor nanostructures. To implement this, herein we study the photocatalytic efficiency of elemental Au, Pd and bimetallic AuPd nanoalloy decorated pristine and reduced graphene oxide (RGO) hybridized ZnO nanorods for degrading rhodamine 6G (R6G) dye. Fabrication of Au, Pd and AuPd nanoalloy on pristine and RGO modified ZnO nanorods is simple and more importantly surfactant or polymer free. AuPd nanoalloyed ZnO-RGO nanocomposites exhibit higher photocatalytic activity for degrading dye than both Au and Pd hybridized ones, indicating the promising potential of bimetallic nanoalloys over elemental components. A non-monotonic dependence on the composite composition was found by analyzing photodegradation efficiency of a series of ZnO-RGO-AuPd hybrid nanostructures with different weight percentages of RGO. The hybrid nanostructure ZnO-RGO (5 wt%)-AuPd (1 wt%) exhibits highest photodegradation efficiency (similar to 100% degradation in 20 min) with an improvement in rate constant (k) by a factor of 10 compared to that of the ZnO-RGO nanocomposite. The enhancement of the photocatalytic activity is attributed to the better separation of photogenerated charge carriers in photocatalysts thereby suggesting possible usefulness in a broad range of applications, such as sensing, photocatalysis and solar energy conversion.
Resumo:
A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.
Resumo:
Monoclinic nanocuboid WO3 enhanced the photocatalyst efficiency of quasi nanobelt zinc oxide for dye degradation in the presence of visible light radiation. Combustion synthesized ZnO resulted in a belt-like morphology through in situ cluster formation of near spherical particles but homogenously disperses and strongly adheres to nanocuboid WO3 during physical mixing. Cationic methylene blue (MB) and anionic orange G (OG) undergo degradation through a charge transfer mechanism in the presence of WO3-ZnO (1 : 9 weight percentage ratio) mixture. The photocatalytic reaction was enhanced due to the reduction in the recombination of photogenerated electron-holes. The high degree of 90% degradation of both dyes is due to the activity of the mixed oxides, which is much higher than that obtained either with WO3 or ZnO individually.
Resumo:
Monoclinic nanocuboid WO3 enhanced the photocatalyst efficiency of quasi nanobelt zinc oxide for dye degradation in the presence of visible light radiation. Combustion synthesized ZnO resulted in a belt-like morphology through in situ cluster formation of near spherical particles but homogenously disperses and strongly adheres to nanocuboid WO3 during physical mixing. Cationic methylene blue (MB) and anionic orange G (OG) undergo degradation through a charge transfer mechanism in the presence of WO3-ZnO (1 : 9 weight percentage ratio) mixture. The photocatalytic reaction was enhanced due to the reduction in the recombination of photogenerated electron-holes. The high degree of 90% degradation of both dyes is due to the activity of the mixed oxides, which is much higher than that obtained either with WO3 or ZnO individually.
Resumo:
We have developed a real-time imaging method for two-color wide-field fluorescence microscopy using a combined approach that integrates multi-spectral imaging and Bayesian image reconstruction technique. To enable simultaneous observation of two dyes (primary and secondary), we exploit their spectral properties that allow parallel recording in both the channels. The key advantage of this technique is the use of a single wavelength of light to excite both the primary dye and the secondary dye. The primary and secondary dyes respectively give rise to fluorescence and bleed-through signal, which after normalization were merged to obtain two-color 3D images. To realize real-time imaging, we employed maximum likelihood (ML) and maximum a posteriori (MAP) techniques on a high-performance computing platform (GPU). The results show two-fold improvement in contrast while the signal-to-background ratio (SBR) is improved by a factor of 4. We report a speed boost of 52 and 350 for 2D and 3D images respectively. Using this system, we have studied the real-time protein aggregation in yeast cells and HeLa cells that exhibits dot-like protein distribution. The proposed technique has the ability to temporally resolve rapidly occurring biological events.
Resumo:
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.
Resumo:
Ferrocenyl (Fc) conjugates (1-3) of alkylpyridinium cations (E)-N-alkyl-4-2-(ferrocenyl)vinyl]pyridinium bromide (alkyl = n-butyl in 1, N,N,N-triethylbutan-1-aminium bromide in 2, and n-butyltriphenylphosphonium bromide in 3) were prepared and characterized, and their photocytotoxicities and cellular uptakes in HeLa cancer and 3T3 normal cells were studied. The species with a 4-methoxyphenyl moiety (4) instead of Fc was used as a control. The triphenylphosphonium-appended 3 was designed for specific delivery into the mitochondria of the cells. Compounds 1-3 showed metal-to-ligand charge-transfer bands at approximate to 550 nm in phosphate buffered saline (PBS). The Fc(+)/Fc and pyridinium core redox couples were observed at 0.75 and -1.2 V versus a saturated calomel electrode (SCE) in CH2Cl2/0.1 M (nBu(4)N)ClO4. Conjugate 3 showed a significantly higher photocytotoxicity in HeLa cancer cells IC50 = (1.3 +/- 0.2) M] than in normal 3T3 cells IC50 = (27.5 +/- 1.5) M] in visible light (400-700 nm). The positive role of the Fc moiety in 3 was evident from the inactive nature of 4. A JC-1 dye (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide) assay showed that 3 targets the mitochondria and induces apoptosis by the mitochondrial intrinsic pathway caused by reactive oxygen species (ROS). Annexin/propidium iodide studies showed that 3 induces apoptotic cell death in visible light by ROS generation, as evidenced from dichlorofluorescein diacetate assay. Compounds 1-3 exhibit DNA photocleavage activity through the formation of hydroxyl radicals.
Resumo:
Standard trypsin digestion protocol of proteins followed by MALDI-MS analysis has been realized as an important tool for the identification and characterization of proteins. In this article, we proposed the elimination of the step of `staining/de-staining of gel pieces' in in-gel digestion protocol in order to improve the efficiency of trypsin digestion. Coomassie dye is known to interfere with digestion of proteins by trypsin and the procedure of staining-de-staining could result in loss of photoaffinity probe, post translational modifications and catalytic activities of enzymes. Further, we studied parameters like hydrophobicity and isoelectric point, and attempted to quantitatively relate it to the efficiency of trypsin digestion. We suggest that properties of proteins should be considered and trypsin digestion protocol should be appropriately modified as per sequence and other information.
Resumo:
A comparative study of two bacterial strains namely, Bacillus licheniformis and Bacillus firmus in the production of bioflocculants was made. The highest bioflocculant yield of 16.55 g/L was obtained from B. licheniformis (L) and 10 g/L from B. firmus (F). The bioflocculants obtained from the bacterial species were water soluble and insoluble in organic solvents. FTIR spectral analysis revealed the presence of hydroxyl, carboxyl and sugar derivatives in the bioflocculants. Thermal characterization by differential scanning calorimetry (DSC) showed the crystalline transition and the melting point (T-m) at 90-100 degrees C. Effects of bioflocculant dosage and pH on the flocculation of clay fines were evaluated. Highest bioflocculation efficiency on kaolin clay suspensions was observed at an optimum bioflocculant dosage of 5 g/L. The optimum pH range for the maximum bioflocculation was at pH 7-9. Bioflocculants exhibited high efficiency in dye decolorization. The maximum Cr (VI) removal was found to be 85 % for L (bioflocculant dosage at 2 g/L). This study demonstrates that microbial bioflocculants find potential applications in mineral processing such as selective flocculation of mineral fines, decolorization of dye solutions and in the remediation of toxic metal solutions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.
Resumo:
CONSPECTUS: Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-kappa B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.
Resumo:
The present paper analyzes the effects of plumes for heat transfer enhancement at solid-liquid interface taking both smooth and grooved surfaces. The experimental setup consists of a tank of dimensions 265 x 265 x 300 (height) containing water. The bottom surface was heated and free surface of the water was left open to the ambient. In the experiments, the bottom plate had either a smooth surface or a grooved surface. We used 90 V-grooved rough surfaces with two groove heights, 10mm and 3mm. The experiment was done with water layer depths of 90mm and 140mm, corresponding to values of aspect ratio(AR) equal to 2.9 and 1.8 respectively. Thymol blue, a pH sensitive dye, was used to visualize the flow near the heated plate. The measured heat transfer coefficients over the grooved surfaces were higher compared that over the smooth surface. The enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area, rather it must be the local dynamics of the thermal boundary layer that changes the heat transport over the rough surface.