120 resultados para Convex Arcs
Resumo:
The classical Erdos-Szekeres theorem states that a convex k-gon exists in every sufficiently large point set. This problem has been well studied and finding tight asymptotic bounds is considered a challenging open problem. Several variants of the Erdos-Szekeres problem have been posed and studied in the last two decades. The well studied variants include the empty convex k-gon problem, convex k-gon with specified number of interior points and the chromatic variant. In this paper, we introduce the following two player game variant of the Erdos-Szekeres problem: Consider a two player game where each player playing in alternate turns, place points in the plane. The objective of the game is to avoid the formation of the convex k-gon among the placed points. The game ends when a convex k-gon is formed and the player who placed the last point loses the game. In our paper we show a winning strategy for the player who plays second in the convex 5-gon game and the empty convex 5-gon game by considering convex layer configurations at each step. We prove that the game always ends in the 9th step by showing that the game reaches a specific set of configurations.
Resumo:
We prove a sub-convex estimate for the sup-norm of L-2-normalized holomorphic modular forms of weight k on the upper half plane, with respect to the unit group of a quaternion division algebra over Q. More precisely we show that when the L-2 norm of an eigenfunction f is one, parallel to f parallel to(infinity) <<(epsilon) k(1/2-1/33+epsilon) for any epsilon > 0 and for all k sufficiently large.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted I-alpha) were studied. Such minimizers were called forward I-alpha-projections. Here, a complementary class of minimization problems leading to the so-called reverse I-alpha-projections are studied. Reverse I-alpha-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (alpha > 1) and in constrained compression settings (alpha < 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse I-alpha-projection into a forward I-alpha-projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Resumo:
Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .
Resumo:
Let X be a convex curve in the plane (say, the unit circle), and let be a family of planar convex bodies such that every two of them meet at a point of X. Then has a transversal of size at most . Suppose instead that only satisfies the following ``(p, 2)-condition'': Among every p elements of , there are two that meet at a common point of X. Then has a transversal of size . For comparison, the best known bound for the Hadwiger-Debrunner (p, q)-problem in the plane, with , is . Our result generalizes appropriately for if is, for example, the moment curve.
Resumo:
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.
Resumo:
The optimal power-delay tradeoff is studied for a time-slotted independently and identically distributed fading point-to-point link, with perfect channel state information at both transmitter and receiver, and with random packet arrivals to the transmitter queue. It is assumed that the transmitter can control the number of packets served by controlling the transmit power in the slot. The optimal tradeoff between average power and average delay is analyzed for stationary and monotone transmitter policies. For such policies, an asymptotic lower bound on the minimum average delay of the packets is obtained, when average transmitter power approaches the minimum average power required for transmitter queue stability. The asymptotic lower bound on the minimum average delay is obtained from geometric upper bounds on the stationary distribution of the queue length. This approach, which uses geometric upper bounds, also leads to an intuitive explanation of the asymptotic behavior of average delay. The asymptotic lower bounds, along with previously known asymptotic upper bounds, are used to identify three new cases where the order of the asymptotic behavior differs from that obtained from a previously considered approximate model, in which the transmit power is a strictly convex function of real valued service batch size for every fade state.
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We introduce a new method for studying universality of random matrices. Let T-n be the Jacobi matrix associated to the Dyson beta ensemble with uniformly convex polynomial potential. We show that after scaling, Tn converges to the stochastic Airy operator. In particular, the top edge of the Dyson beta ensemble and the corresponding eigenvectors are universal. As a byproduct, these ideas lead to conjectured operator limits for the entire family of soft edge distributions. (C) 2015 Wiley Periodicals, Inc.
Resumo:
The problem of secure unicast communication over a two hop Amplify-and-Forward wireless relay network with multiple eavesdroppers is considered. Assuming that a receiver (destination or eavesdropper) can decode a message only if the received SNR is above a predefined threshold, we consider this problem in two scenarios. In the first scenario, we maximize the SNR at the legitimate destination, subject to the condition that the received SNR at each eavesdropper is below the target threshold. Due to the non-convex nature of the objective function and eavesdroppers' constraints, we transform variables and obtain a quadratically constrained quadratic program (QCQP) with convex constraints, which can be solved efficiently. When the constraints are not convex, we consider a semidefinite relaxation (SDR) to obtain computationally efficient approximate solution. In the second scenario, we minimize the total power consumed by all relay nodes, subject to the condition that the received SNR at the legitimate destination is above the threshold and at every eavesdropper, it is below the corresponding threshold. We propose a semidefinite relaxation of the problem in this scenario and also provide an analytical lower bound.
Resumo:
The problem of characterizing global sensitivity indices of structural response when system uncertainties are represented using probabilistic and (or) non-probabilistic modeling frameworks (which include intervals, convex functions, and fuzzy variables) is considered. These indices are characterized in terms of distance measures between a fiducial model in which uncertainties in all the pertinent variables are taken into account and a family of hypothetical models in which uncertainty in one or more selected variables are suppressed. The distance measures considered include various probability distance measures (Hellinger,l(2), and the Kantorovich metrics, and the Kullback-Leibler divergence) and Hausdorff distance measure as applied to intervals and fuzzy variables. Illustrations include studies on an uncertainly parametered building frame carrying uncertain loads. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We begin by giving an example of a smoothly bounded convex domain that has complex geodesics that do not extend continuously up to partial derivative D. This example suggests that continuity at the boundary of the complex geodesics of a convex domain Omega (sic) C-n, n >= 2, is affected by the extent to which partial derivative Omega curves or bends at each boundary point. We provide a sufficient condition to this effect (on C-1-smoothly bounded convex domains), which admits domains having boundary points at which the boundary is infinitely flat. Along the way, we establish a Hardy-Littlewood-type lemma that might be of independent interest.
Resumo:
Maximum, spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1-100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves; beta(m,perpendicular to) is seen to be less than, that:measured parallel to grooves, beta(m,perpendicular to).The difference between beta(m,perpendicular to), and beta(m,parallel to) increases with drop impact velocity. This deviation of beta(m,perpendicular to) from beta(m,parallel to) is analyzed by considering the possible mechanisms, correspond, ing to experimental observations (1) impregnation of drop into the grooves, (2) convex shape of liquid vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edges by incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed: deviation of beta(m,perpendicular to) from beta(m,parallel to) compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts beta(m,perpendicular to) on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters,on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning, absent, predicts beta(m,parallel to) with an average error of 6.3%.
Resumo:
Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells-MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line-were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every similar to 125 mu m from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our understanding of cell movements during developmental patterning and cancer metastasis.