155 resultados para Clique vertex irreducible graphs
Resumo:
We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.
Resumo:
We investigate into the limitations of the sum-product algorithm in the probability domain over graphs with isolated short cycles. By considering the statistical dependency of messages passed in a cycle of length 4, we modify the update equations for the beliefs at the variable and check nodes. We highlight an approximate log domain algebra for the modified variable node update to ensure numerical stability. At higher signal-to-noise ratios (SNR), the performance of decoding over graphs with isolated short cycles using the modified algorithm is improved compared to the original message passing algorithm (MPA).
Resumo:
A rainbow matching of an edge-colored graph G is a matching in which no two edges have the same color. There have been several studies regarding the maximum size of a rainbow matching in a properly edge-colored graph G in terms of its minimum degree 3(G). Wang (2011) asked whether there exists a function f such that a properly edge-colored graph G with at least f (delta(G)) vertices is guaranteed to contain a rainbow matching of size delta(G). This was answered in the affirmative later: the best currently known function Lo and Tan (2014) is f(k) = 4k - 4, for k >= 4 and f (k) = 4k - 3, for k <= 3. Afterwards, the research was focused on finding lower bounds for the size of maximum rainbow matchings in properly edge-colored graphs with fewer than 4 delta(G) - 4 vertices. Strong edge-coloring of a graph G is a restriction of proper edge-coloring where every color class is required to be an induced matching, instead of just being a matching. In this paper, we give lower bounds for the size of a maximum rainbow matching in a strongly edge-colored graph Gin terms of delta(G). We show that for a strongly edge-colored graph G, if |V(G)| >= 2 |3 delta(G)/4|, then G has a rainbow matching of size |3 delta(G)/4|, and if |V(G)| < 2 |3 delta(G)/4|, then G has a rainbow matching of size |V(G)|/2] In addition, we prove that if G is a strongly edge-colored graph that is triangle-free, then it contains a rainbow matching of size at least delta(G). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in R-k such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total orders of the vertices of G such that for any two disjoint edges of G, there exists at least one total order in F in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on n vertices is Theta(log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree d is at most 2(9) (log*d)d. We also demonstrate that the above bound is nearly tight by showing that, for every d, almost all d-regular graphs have separation dimension at least d/2]
Resumo:
The boxicity (cubicity) of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in R-k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of d, of the boxicity and the cubicity of the dth power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dth Cartesian power of any given finite graph is, respectively, in O(log d/ log log d) and circle dot(d/ log d). On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We study the problem of finding small s-t separators that induce graphs having certain properties. It is known that finding a minimum clique s-t separator is polynomial-time solvable (Tarjan in Discrete Math. 55:221-232, 1985), while for example the problems of finding a minimum s-t separator that induces a connected graph or forms an independent set are fixed-parameter tractable when parameterized by the size of the separator (Marx et al. in ACM Trans. Algorithms 9(4): 30, 2013). Motivated by these results, we study properties that generalize cliques, independent sets, and connected graphs, and determine the complexity of finding separators satisfying these properties. We investigate these problems also on bounded-degree graphs. Our results are as follows: Finding a minimum c-connected s-t separator is FPT for c=2 and W1]-hard for any ca parts per thousand yen3. Finding a minimum s-t separator with diameter at most d is W1]-hard for any da parts per thousand yen2. Finding a minimum r-regular s-t separator is W1]-hard for any ra parts per thousand yen1. For any decidable graph property, finding a minimum s-t separator with this property is FPT parameterized jointly by the size of the separator and the maximum degree. Finding a connected s-t separator of minimum size does not have a polynomial kernel, even when restricted to graphs of maximum degree at most 3, unless .
Resumo:
The fluctuations exhibited by the cross sections generated in a compound-nucleus reaction or, more generally, in a quantum-chaotic scattering process, when varying the excitation energy or another external parameter, are characterized by the width Gamma(corr) of the cross-section correlation function. Brink and Stephen Phys. Lett. 5, 77 (1963)] proposed a method for its determination by simply counting the number of maxima featured by the cross sections as a function of the parameter under consideration. They stated that the product of the average number of maxima per unit energy range and Gamma(corr) is constant in the Ercison region of strongly overlapping resonances. We use the analogy between the scattering formalism for compound-nucleus reactions and for microwave resonators to test this method experimentally with unprecedented accuracy using large data sets and propose an analytical description for the regions of isolated and overlapping resonances.
Resumo:
Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .
Resumo:
The boxicity (respectively cubicity) of a graph G is the least integer k such that G can be represented as an intersection graph of axis-parallel k-dimensional boxes (respectively k-dimensional unit cubes) and is denoted by box(G) (respectively cub(G)). It was shown by Adiga and Chandran (2010) that for any graph G, cub(G) <= box(G) log(2) alpha(G], where alpha(G) is the maximum size of an independent set in G. In this note we show that cub(G) <= 2 log(2) X (G)] box(G) + X (G) log(2) alpha(G)], where x (G) is the chromatic number of G. This result can provide a much better upper bound than that of Adiga and Chandran for graph classes with bounded chromatic number. For example, for bipartite graphs we obtain cub(G) <= 2(box(G) + log(2) alpha(G)] Moreover, we show that for every positive integer k, there exist graphs with chromatic number k such that for every epsilon > 0, the value given by our upper bound is at most (1 + epsilon) times their cubicity. Thus, our upper bound is almost tight. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
Pyramidal asperities of different apical angle were machined on a flat copper surface. Hardness was estimated from the load-displacement graphs obtained by pressing a spherical rigid indenter onto the asperities. The variation of hardness with apical angle and pitch was recorded with a view to contributing to the development of a general framework for relating measured hardness to the surface roughness.
Resumo:
We explore the use of polarized e(+)/e(-) beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e(+)e(-) -> f (f) over barH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular tau helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
Let G = (V, E) be a finite, simple and undirected graph. For S subset of V, let delta(S, G) = {(u, v) is an element of E : u is an element of S and v is an element of V - S} be the edge boundary of S. Given an integer i, 1 <= i <= vertical bar V vertical bar, let the edge isoperimetric value of G at i be defined as b(e)(i, G) = min(S subset of V:vertical bar S vertical bar=i)vertical bar delta(S, G)vertical bar. The edge isoperimetric peak of G is defined as b(e)(G) = max(1 <= j <=vertical bar V vertical bar)b(e)(j, G). Let b(v)(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi: 10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees. The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as T-d(2)), c(1)d <= b(e) (T-d(2)) <= d and c(2)d <= b(v)(T-d(2)) <= d where c(1), c(2) are constants. For a complete t-ary tree of depth d (denoted as T-d(t)) and d >= c log t where c is a constant, we show that c(1)root td <= b(e)(T-d(t)) <= td and c(2)d/root t <= b(v) (T-d(t)) <= d where c(1), c(2) are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T = (V, E, r) be a finite, connected and rooted tree - the root being the vertex r. Define a weight function w : V -> N where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index eta(T) be defined as the number of distinct weights in the tree, i.e eta(T) vertical bar{w(u) : u is an element of V}vertical bar. For a positive integer k, let l(k) = vertical bar{i is an element of N : 1 <= i <= vertical bar V vertical bar, b(e)(i, G) <= k}vertical bar. We show that l(k) <= 2(2 eta+k k)
Resumo:
A reanalysis of the correction to the Boltzmann conductivity due to maximally crossed graphs for degenerate bands explains why the conductivity scale in many-valley semiconductors is an order of magnitude higher than Mott's "minimum metallic conductivity." With the use of a reasonable assumption for the Boltzmann mean free path, the lowest-order perturbation theory is seen to give a remarkably good, semiquantitative, description of the conductivity variation in both uncompensated doped semiconductors and amorphous alloys.
Resumo:
An analytical method has been proposed to optimise the small-signaloptical gain of CO2-N2 gasdynamic lasers (gdl) employing two-dimensional (2D) wedge nozzles. Following our earlier work the equations governing the steady, inviscid, quasi-one-dimensional flow in the wedge nozzle of thegdl are reduced to a universal form so that their solutions depend on a single unifying parameter. These equations are solved numerically to obtain similar solutions for the various flow quantities, which variables are subsequently used to optimize the small-signal-gain. The corresponding optimum values like reservoir pressure and temperature and 2D nozzle area ratio also have been predicted and graphed for a wide range of laser gas compositions, with either H2O or He as the catalyst. A large number of graphs are presented which may be used to obtain the optimum values of small signal gain for a wide range of laser compositions without further computations.