245 resultados para Calcite dissolution rate
Resumo:
Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.
Resumo:
A fatigue crack growth rate study has been carried out on L-72 aluminium alloy plate specimens with and without cold worked holes. The cold worked specimens showed significantly increased fatigue life compared to unworked specimens. Computer software is developed to evaluate the stress intensity factor for non-uniform stress distributions using Green's function approach. The exponents for the Paris equation in the stable crack growth region for cold worked and unworked specimens are 1.26 and 3.15 respectively. The reduction in exponent value indicates the retardation in crack growth rate. An SEM study indicates more plastic deformation at the edge of the hole for unworked samples as compared to the worked samples during the crack initiation period.
Resumo:
The ductile-to-brittle transition temperature (DBTT) of a free-standing Pt-aluminide (PtAl) bondcoat was determined using the microtensile testing method and the effect of strain rate variation, in the range 10(-5) to 10(-1) s(-1), on the DBTT studied. The DBTT increased appreciably with the increase in strain rate. The activation energy determined for brittle-to-ductile transition, suggested that such transition is most likely associated with vacancy diffusion. Climb of aOE (c) 100 > dislocations observed in analysis of dislocation structure using a transmission electron microscope (TEM) supported the preceding mechanism.
Resumo:
Reactions of cyanide radicals with alkanes have been investigated by ab initio methods. It is found that the potential energy surface for reaction of CN with a primary C-H bond in methane has a small positive barrier while reactions of CN with a secondary and a tertiary C-H bond in alkanes are barrierless at the correlated level. A simple explanation for the obtained negative temperature dependence of rate constants for reactions of CN with a secondary and a tertiary C-H bond in alkanes are given in terms of the collision theory of bimolecular reactions. It is shown that for barrierless reactions the negative temperature dependence of the rate constants is attributed to the variation of the pre-exponential factor with temperature.
Resumo:
Copper with four widely differing grain sizes was subjected to high-strain-rate plastic deformation in a special experimental arrangement in which high shear strains of approximately 2 to 7 were generated. The adiabatic plastic deformation produced temperature rises in excess of 300 K, creating conditions favorable for dynamic recrystallization, with an attendant change in the mechanical response. Preshocking of the specimens to an amplitude of 50 GPa generated a high dislocation density; twinning was highly dependent on grain size, being profuse for the 117- and 315-mu m grain-size specimens and virtually absent for the 9.5-mu m grain-size specimens. This has a profound effect on the subsequent mechanical response of the specimens, with the smaller grain-size material undergoing considerably more hardening than the larger grain-size material. A rationale is proposed which leads to a prediction of the shock threshold stress for twinning as a function of grain size. The strain required for localization of plastic deformation was dependent on the combined grain size/shock-induced microstructure, with the large grain-size specimens localizing more readily. The experimental results obtained are rationalized in terms of dynamic recrystallization, and a constitutive equation is applied to the experimental results; it correctly predicts the earlier onset of localization for the large grain-size specimens. It is suggested that the grain-size dependence of shock response can significantly affect the performance of shaped charges.
Resumo:
Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.
Resumo:
Solution of generalized eigenproblem, K phi = lambda M phi, by the classical inverse iteration method exhibits slow convergence for some eigenproblems. In this paper, a modified inverse iteration algorithm is presented for improving the convergence rate. At every iteration, an optimal linear combination of the latest and the preceding iteration vectors is used as the input vector for the next iteration. The effectiveness of the proposed algorithm is demonstrated for three typical eigenproblems, i.e. eigenproblems with distinct, close and repeated eigenvalues. The algorithm yields 29, 96 and 23% savings in computational time, respectively, for these problems. The algorithm is simple and easy to implement, and this renders the algorithm even more attractive.
Resumo:
The coherent flame model uses the strain rate to predict reaction rate per unit flame surface area and some procedure that solves for the dynamics of flame surfaces to predict species distributions. The strainrate formula for the reaction rate is obtained from the analytical solution for a flame in a laminar, plane stagnation point flow. Here, the formula's effectiveness is examined by comparisons with data from a direct numerical simulation (DNS) of a round jetlike flow that undergoes transition to turbulence. Significant differences due to general flow features can be understood qualitatively: Model predictions are good in the braids between vortex rings, which are present in the near field of round jets, as the strain rate is extensional and reaction surfaces are isolated. In several other regions, the strain rate is compressive or flame surfaces are folded close together. There, the predictions are poor as the local flow no longer resembles the model flow. Quantitative comparisons showed some discrepancies. A modified, consistent application of the strain-rate solution did not show significant changes in the prediction of mean reaction rate distributions.
Resumo:
A microbial survey of Jamnagar bauxite mines in Gujarat, India, revealed the indigenous presence of a variety of autotrophic and heterotrophic bacteria and fungi associated with the ore body and water ponds in the vicinity. Among these, bacteria belonging to the genera Thiobacillus, Bacillus and Pseudomonas are implicated in the weathering of aluminosilicates; the precipitation of iron oxyhydroxides; the dissolution and conversion of alkaline metal species; and the formation of alumina, silica and calcite minerals. Fungi belonging to the genus Cladosporium can reduce ferric iron and dissolve alumina silicates. Biogenesis thus plays a significant role in bauxite mineralization. Various types of bacteria and fungi, such as Bacillus polymyxa, Bacillus coagulans and Aspergillus niger, were found to be efficient in significant calcium solubilization and partial iron removal from bauxite ore. Probable mechanisms in the biobeneficiation process are analyzed. Biobeneficiation is shown to be an effective technique for the removal of iron and calcium from bauxite ores for use in refractories and ceramics.
Resumo:
Cardiac autonomic neuropathy is known to occur in alcoholics but the extent of its subclinical form is not usually recognized, Heart Rate Variability (HRV) analysis can detect subclinical autonomic neuropathy. In this study the HRV parameters were compared in 20 neurologically asymptomatic alcoholics, 20 age-matched normals and 16 depressives. All were males, ECG was recorded in a quiet room for four minutes in supine position. Time and Frequency domain parameters of HRV were computed by a researcher blind to clinical details. Alcoholics had significantly smaller Coefficient of Variation of R-R intervals (CVR-R) on time domain analysis and smaller HF band (0.15-0.5 Hz) power on spectral analysis. The decreased Heart Rate Variability indicates cardiac autonomic dysfunction.
Resumo:
A detailed investigation of viscosity dependence of the isomerization rate is carried out for continuous potentials by using a fully microscopic, self-consistent mode-coupling theory calculation of both the friction on the reactant and the viscosity of the medium. In this calculation we avoid approximating the short time response by the Enskog limit, which overestimates the friction at high frequencies. The isomerization rate is obtained by using the Grote-Hynes formula. The viscosity dependence of the rate has been investigated for a large number of thermodynamic state points. Since the activated barrier crossing dynamics probes the high-frequency frictional response of the liquid, the barrier crossing rate is found to be sensitive to the nature of the reactant-solvent interaction potential. When the solute-solvent interaction is modeled by a 6-12 Lennard-Jones potential, we find that over a large variation of viscosity (eta), the rate (k) can indeed be fitted very well to a fractional viscosity dependence: (k similar to eta(-alpha)), with the exponent alpha in the range 1 greater than or equal to alpha >0. The calculated values of the exponent appear to be in very good agreement with many experimental results. In particular, the theory, for the first time, explains the experimentally observed high value of alpha even at the barrier frequency, omega(b). similar or equal to 9 X 10(12) s(-1) for the isomerization reaction of 2-(2'-propenyl)anthracene in liquid eta-alkanes. The present study can also explain the reason for the very low value of vb observed in another study for the isomerization reaction of trans-stilbene in liquid n-alkanes. For omega(b) greater than or equal to 2.0 X 10(13) s(-1), we obtain alpha similar or equal to 0, which implies that the barrier crossing rate becomes identical to the transition-state theory predictions. A careful analysis of isomerization reaction dynamics involving large amplitude motion suggests that the barrier crossing dynamics itself may become irrelevant in highly viscous liquids and the rate might again be coupled directly to the viscosity. This crossover is predicted to be strongly temperature dependent and could be studied by changing the solvent viscosity by the application of pressure. (C) 1999 American Institute of Physics. [S0021-9606(9950514-X].
Resumo:
We consider the effect of subdividing the potential barrier along the reaction coordinate on Kramer's escape rate for a model potential, Using the known supersymmetric potential approach, we show the existence of an optimal number of subdivisions that maximizes the rate, We cast the problem as a mean first passage time problem of a biased random walker and obtain equivalent results, We briefly summarize the results of our investigation on the increase in the escape rate by placing a blow-torch in the unstable part of one of the potential wells. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
We develop an optimal, distributed, and low feedback timer-based selection scheme to enable next generation rate-adaptive wireless systems to exploit multi-user diversity. In our scheme, each user sets a timer depending on its signal to noise ratio (SNR) and transmits a small packet to identify itself when its timer expires. When the SNR-to-timer mapping is monotone non-decreasing, timers of users with better SNRs expire earlier. Thus, the base station (BS) simply selects the first user whose timer expiry it can detect, and transmits data to it at as high a rate as reliably possible. However, timers that expire too close to one another cannot be detected by the BS due to collisions. We characterize in detail the structure of the SNR-to-timer mapping that optimally handles these collisions to maximize the average data rate. We prove that the optimal timer values take only a discrete set of values, and that the rate adaptation policy strongly influences the optimal scheme's structure. The optimal average rate is very close to that of ideal selection in which the BS always selects highest rate user, and is much higher than that of the popular, but ad hoc, timer schemes considered in the literature.