513 resultados para CARBON CENTERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes have been prepared by pyrolysing tetrahydrofuran (THF) in the presence of nickelocene. Pyrolysis of the precursor mixture has been achieved at temperature as low as 600 degrees C. In this simple approach no carrier gas has been used. The yield of purified carbon nanotubes is found to be more than 65%. Characterization of the as-prepared and purified nanotubes are done by Xray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and Raman spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanorods of several oxides, with diameters in the range of 10-200 nm and lengths upto a few microns, have been prepared by templating against carbon nanotubes. The oxides include V2O5, WO3, MoO3 and Sb2O5 as well as metallic MoO2, RuO2 and IrO2. The nanorods tend to be single-crystalline structures. Nanotube structures have also been obtained in MoO3 and RuO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodes made of purified and open single walled carbon nanotubes behave like metal hydride electrodes in Ni-MH batteries, showing high electrochemical reversible charging capacity up to 800 mAh g(-1) corresponding to a hydrogen storage capacity of 2.9 wt% compared to known AB(5), AB(2) metal hydride electrodes. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fractional-factorial methods in the optimization of porous-carbon electrode structure is discussed with respect to weight-loss of carbon during gas treatment, weight and mixing time of binder, compaction temperature, time and pressure, and pressure of feed gas. The experimental optimization of an air electrode in alkaline solution is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium solubility of a pharmaceutical compound. 1,5-dimethy1-2-phenyl-4-propan-2-ylpyrazol-3-one (propyphenazone, isopropylantipyrine) in supercritical carbon dioxide (SCCO2) was experimentally determined by a saturation method at 308, 318 and 328 K. over the pressure range of 9.0-19.0 MPa. The solubility data satisfied the self-consistency test, proposed by Mendez-Santiago and Teja. A new association model was derived to correlate the solubilities of pharmaceutical compounds in SCCO2. Solubility data from 54 different pharmaceutical compounds including steroids, antibiotics, anti-inflammatory, antioxidants, statins and specific functional drugs were collected from literature. The model successfully correlated the experimental results for the solubilities of all these compounds in SCCO2 within 12% AARD. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, Eringen's nonlocal elasticity theory is employed to evaluate the length dependent in-plane stiffness of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled as an Euler-Bernoulli beam and is analyzed for various boundary conditions to evaluate the length dependent in-plane stiffness. It has been found that the nonlocal scaling parameter has a significant effect on the length dependent in-plane stiffness of SWCNTs. It has been observed that as the nonlocal scale parameter increases the stiffness ratio of SWCNT decreases. In nonlocality, the cantilever SWCNT has high in-plane stiffness as compared to the simply-supported and the clamped cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual carbon nanotubes being substantially smaller than the wavelength of light, are not much responsive to optical manipulation. Here we demonstrate how decorating single-walled carbon nanotubes with palladium particles makes optical trapping and manipulation easier. Palladium decorated nanotubes (Pd/SWNTs) have higher effective dielectric constant and are trapped at much lower laser power level with greater ease. In addition, we report the transportation of Pd/SWNTs using an asymmetric line trap. Using this method carbon nanotubes can be transported in any desired direction with high transportation speed. (c) 2006 Optical Society of America.