205 resultados para Atomic spectra.
Resumo:
The infrared spectra of N-methylthiourea (NMTU) and its N-deuterated and S-methylated species were measured. Assignment of the infrared and Raman spectra of NMTU has been accomplished by correlation with thiourea and by use of infrared band shifts on N-deuteration as well as S-methylation. Normal coordinate analysis was performed for all the fundamentals of NMTU and NMTU-d3, the assignments obtained from the force field calculations being discussed in relation to those in other related thioureas and thioamides. The potential barriers to the internal rotations for the �NH2, �CH3, and �CN groups were estimated from the force constants.
Resumo:
Infrared spectra of imidazolidine-2-thione (N,N?-ethylenethiourea, ETU) and its N,N?-deuterated (ETU-d2) and S-methylthiouronium iodides have been recorded from 4000 to 30 cm?1. Normal coordinate analyses of ETU and ETU-d2 have been made for all the fundamental frequencies, employing a Urey-Bradley potential function supplemented with valence type constants for the out of plane modes of the planar skeleton. Raman frequencies of ETU from literature have been utilised. The results of the vibrational analyses are discussed in relation to the group frequencies in structurally related molecules and frequency shifts on deuteration and S-methylation. The normal coordinate treatment is also performed for the planar vibrations of imidazolidine-2-selenone (N,N?-ethyleneselenourea, ESU) to propose assignments for ESU and so also to support the assignments of ETU.
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
Four isomeric dialdehydes 4, readily available from cycloaddition of propiolic aldehyde (2) to 1,2,4,5-hexatetraene (1), were separated by chromatography and recrystallization, and were characterized by their spectroscopic data. The individual isomers can now be easily identified from their H-1 NMR spectra even if only one of them is present.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.
Resumo:
Transition metal sulfite hydrazine hydrates, MSO3·xN2H4·yH2O whereM=Mn, Fe, Co, Ni and Zn have been prepared and characterized by chemical analysis, infrared spectra, thermoanalytical and combustion studies. The colours,x andy parameters of the complexes varied depending upon the preparation conditions. Thermal decomposition characteristics differ from metal to metal yielding metal oxides at relatively low temperatures.Mittels chemischer Analyse, IR-Spektren, thermoanalytischen und Verbrennungsstudien wurden die Hydrazinhydrate der hergestellten Übergangsmetallsulfite MSO3·xN2H4·yH2O mitM=Mn, Fe, Co, Ni und Zn beschrieben. Farbe sowie die Parameterx undy der Komplexe hängen von den Herstellungsbedingungen ab. Die thermische Zersetzung, bei der bei relativ niedrigen Temperaturen Metalloxide entstehen, ist von Metall zu Metall verschieden.
Resumo:
Diamond crystallites were synthesized using various oxygen‐hydrocarbon flames. The flames have been profiled in real time using a nonintrusive diagnostic technique. Optical emission spectra for different zones have been recorded and the active species identified. Diamond growth was observed only in the thermodynamically unequilibriated primary combustion zone of the flames. Carbon‐bearing species, atomic hydrogen, and atomic oxygen, noted to be critical for diamond growth, were observed in the flames. The diamond growth was confirmed by x‐ray diffraction, laser‐Raman analysis, and scanning electron microscopy. The study offers the first insight into the flame spectra in the context of diamond synthesis at atmospheric pressures.
Resumo:
The use of the intensities of the spinning sidebands in the magic-angle spinning spectra of oriented molecules is proposed for the determination of the signs of the order parameters. The method is demonstrated for benzene and chloroform oriented in nematic phases of liquid crystals. On the basis of the theoretical expressions derived for the various order sidebands, the applicability of the method for different experimental conditions is discussed.
Resumo:
We study the electronic structure of La1-xSrxMnO3+δ, x=0, 0.1, 0.2, 0.3, and 0.4, across the semiconductor-metal transition, using various electron spectroscopy techniques. The negligible intensity seen at EF using ultraviolet photoemission spectroscopy and bremsstrahlung isochromat spectroscopy (BIS) indicate an unusual semiconductor-metal transition observed for x≥0.2, consistent with the resistivity data. The BIS spectra show doped hole states developing about 1.4 eV above EF as a function of x. Auger electron spectroscopy gives an estimate of the intra-atomic Coulomb energy in the O 2p manifold to be about 6.8 eV. The Mn 2p core-level spectrum of LaMnO3, analyzed in terms of a configuration-interaction calculation, gives parameter values of the charge-transfer energy Δ=5.0 eV, the hybridization strength between Mn 3d and O 2p states, t=3.8 eV, and the on-site Coulomb energy in Mn 3d states Udd=4.0 eV, suggesting a mixed character for the ground state of LaMnO3.