201 resultados para Area-restricted search


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-area PVDF thin films have been prepared and characterized for quasi-static and high frequency dynamic strain sensing applications. These films are prepared using hot press method and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The fabricated films have been characterized for quasi-static strain sensing and the linear strain-voltage relationship obtained is promising. In order to evaluate the ultrasonic sensing properties, a PZT wafer has been used to launch Lamb waves in a metal beam on which the PVDF film sensor is bonded at a distance. The voltage signals obtained from the PVDF films have been compared with another PZT wafer sensor placed on the opposite surface of the beam as a reference signal. Due to higher stiffness and higher thickness of the PZT wafer sensors, certain resonance patterns significantly degrade the sensor sensitivity curves. Whereas, the present results show that the large-area PVDF sensors can be superior with the signal amplitude comparable to that of PZT sensors and with no resonance-induced effect, which is due to low mechanical impedance, smaller thickness and larger area of the PVDF film. Moreover, the developed PVDF sensors are able to capture both A(0) and S-0 modes of Lamb wave, whereas the PZT sensors captures only A(0) mode in the same scale of voltage output. This shows promises in using large-area PVDF films with various surface patterns on structures for distributed sensing and structural health monitoring under quasi-static, vibration and ultrasonic situations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetric binary search switching technique for a successive approximation register (SAR) ADC is presented, and trade-off between switching energy and conversion cycles is discussed. Without using any additional switches, the proposed technique consumes 46% less switching energy, for a small input swing (0.5 V-ref (P-P)), as compared to the last reported efficient switching technique in literature for an 8-bit SAR ADC. For a full input swing (2 V-ref (P-P)), the proposed technique consumes 16.5% less switching energy.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper present an area optimized architecture for Intra prediction, for H.264 decoding at HDTV resolution with a target of achieving 60 fps. The architecture was validated on Virtex-5 FPGA based platform. The architecture achieves a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple UAVs are deployed to carry out a search and destroy mission in a bounded region. The UAVs have limited sensor range and can carry limited resources which reduce with use. The UAVs perform a search task to detect targets. When a target is detected which requires different type and quantities of resources to completely destroy, then a team of UAVs called as a coalition is formed to attack the target. The coalition members have to modify their route to attack the target, in the process, the search task is affected, as search and destroy tasks are coupled. The performance of the mission is a function of the search and the task allocation strategies. Therefore, for a given task allocation strategy, we need to devise search strategies that are efficient. In this paper, we propose three different search strategies namely; random search strategy, lanes based search strategy and grid based search strategy and analyze their performance through Monte-Carlo simulations. The results show that the grid based search strategy performs the best but with high information overhead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baeyer-Villiger reaction of 2-(2-oxocyclohexyl) acetic acid occurs via a bicyclic Criegee intermediate, which fragments with stereoelectronic control, as evidenced by product analysis; the reaction of the but-2-yl ester and of 2-(2-oxocyclopentyl) acetic acid also show evidence of such stereoelectronic control, but less convincingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction between the various species in slag and metal phase is usually mass transfer controlled. There have been continuous efforts to increase the reaction efficiency in slag-metal system, especially during decarburization of steel to produce the ultra low carbon steel (ULCS) in secondary steelmaking. It has been found that the surface reaction is a dominant factor in the final stage of decarburization. In the initial stage, the inner site reaction is major factor in the refining process. The mixing of bath affects the later reaction. However, the former reaction (surface reaction) is affected by the plume size area at the top of the metal surface. Therefore, a computational study has been made to understand the fluid dynamics of a new secondary steelmaking process called Revolutionary Degasser Activator (REDA) to study the bath mixing and plume area. REDA process has been considered as it is claimed that this process can reduce the carbon content in steel below 10ppm in a less time than the other existing processes such as RH and Tank degasser. This study shows that both bath mixing and plume area are increased in REDA process facilitating it to give the desired carbon content in less time. Qualitative comments are made on slag-metal reaction system based on this finding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a frontier based algorithm for searching multiple goals in a fully unknown environment, with only information about the regions where the goals are most likely to be located. Our algorithm chooses an ``active goal'' from the ``active goal list'' generated by running a Traveling Salesman Problem (Tsp) routine with the given centroid locations of the goal regions. We use the concept of ``goal switching'' which helps not only in reaching more number of goals in given time, but also prevents unnecessary search around the goals that are not accessible (surrounded by walls). The simulation study shows that our algorithm outperforms Multi-Heuristic LRTA* (MELRTA*) which is a significant representative of multiple goal search approaches in an unknown environment, especially in environments with wall like obstacles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem addressed is one of model reference adaptive control (MRAC) of asymptotically stable plants of unknown order with zeros located anywhere in the s-plane except at the origin. The reference model is also asymptotically stable and lacking zero(s) at s = 0. The control law is to be specified only in terms of the inputs to and outputs of the plant and the reference model. For inputs from a class of functions that approach a non-zero constant, the problem is formulated in an optimal control framework. By successive refinements of the sub-optimal laws proposed here, two schemes are finally design-ed. These schemes are characterized by boundedness, convergence and optimality. Simplicity and total time-domain implementation are the additional striking features. Simulations to demonstrate the efficacy of the control schemes are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of automated multiagent search in an unknown environment. Autonomous agents equipped with sensors carry out a search operation in a search space, where the uncertainty, or lack of information about the environment, is known a priori as an uncertainty density distribution function. The agents are deployed in the search space to maximize single step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for the proposed sequential deploy and search strategy. It is shown that with the proposed control law the agent trajectories converge in a globally asymptotic manner to the centroidal Voronoi configuration. Simulation experiments are provided to validate the strategy. Note to Practitioners-In this paper, searching an unknown region to gather information about it is modeled as a problem of using search as a means of reducing information uncertainty about the region. Moreover, multiple automated searchers or agents are used to carry out this operation optimally. This problem has many applications in search and surveillance operations using several autonomous UAVs or mobile robots. The concept of agents converging to the centroid of their Voronoi cells, weighted with the uncertainty density, is used to design a search strategy named as sequential deploy and search. Finally, the performance of the strategy is validated using simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Algorithms are efficient and robust search methods that are being employed in a plethora of applications with extremely large search spaces. The directed search mechanism employed in Genetic Algorithms performs a simultaneous and balanced, exploration of new regions in the search space and exploitation of already discovered regions.This paper introduces the notion of fitness moments for analyzing the working of Genetic Algorithms (GAs). We show that the fitness moments in any generation may be predicted from those of the initial population. Since a knowledge of the fitness moments allows us to estimate the fitness distribution of strings, this approach provides for a method of characterizing the dynamics of GAs. In particular the average fitness and fitness variance of the population in any generation may be predicted. We introduce the technique of fitness-based disruption of solutions for improving the performance of GAs. Using fitness moments, we demonstrate the advantages of using fitness-based disruption. We also present experimental results comparing the performance of a standard GA and GAs (CDGA and AGA) that incorporate the principle of fitness-based disruption. The experimental evidence clearly demonstrates the power of fitness based disruption.