145 resultados para Antimicrobial peptide
Resumo:
A series of 1,4-disubstituted 1,2,3-bistriazoles was synthesized via click chemistry by cycloaddition of various bisalkynes with benzyl/2-phenylethyl azide. Synthesized triazoles were characterized by IR, H-1 NMR, C-13 NMR and mass spectral techniques. All the compounds were evaluated for antibacterial/antifungal activities and found to possess moderate to good antimicrobial activities. Further the docking study for the most active compound against DNA Gyrase was also carried out. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
beta-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum beta-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk beta-lactoglobulin. Comparative sequence analysis of BLG-col to milk beta-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC50 of 498 +/- 2 mu M, which was rationalized through docking simulations using Molgrow virtual docker. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Trypanosomatids cause deadly diseases in humans. Of the various biochemical pathways in trypanosomatids, glycolysis, has received special attention because of being sequestered in peroxisome like organelles critical for the survival of the parasites. This study focuses on phosphoglycerate kinase (PGK) from Leishmania spp. which, exists in two isoforms, the cytoplasmic PGKB and glycosomal PGKC differing in their biochemical properties. Computational analysis predicted the likelihood of a transmembrane helix only in the glycosomal isoform PGKC, of approximate length 20 residues in the 62-residue extension, ending at, arginine residues R471 and R472. From experimental studies using circular dichroism and NMR with deuterated sodium dodecyl sulfate, we find that the transmembrane helix spans residues 448 +/- 2 to 476 in Leishmania mexicana PGKC. The significance of this observation is discussed in the context of glycosomal transport and substrate tunneling. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The presence of energetically less favourable cis peptides in protein structures has been observed to be strongly associated with its structural integrity and function. Inter-conversion between the cis and trans conformations also has an important role in the folding process. In this study, we analyse the extent of conservation of cis peptides among similar folds. We look at both the amino acid preferences and local structural changes associated with such variations. Nearly 34% of the Xaa-Proline cis bonds are not conserved in structural relatives; Proline also has a high tendency to get replaced by another amino acid in the trans conformer. At both positions bounding the peptide bond, Glycine has a higher tendency to lose the cis conformation. The cis conformation of more than 30% of beta turns of type VIb and IV are not found to be conserved in similar structures. A different view using Protein Block-based description of backbone conformation, suggests that many of the local conformational changes are highly different from the general local structural variations observed among structurally similar proteins. Changes between cis and trans conformations are found to be associated with the evolution of new functions facilitated by local structural changes. This is most frequent in enzymes where new catalytic activity emerges with local changes in the active site. Cis-trans changes are also seen to facilitate inter-domain and inter-protein interactions. As in the case of folding, cis-trans conversions have been used as an important driving factor in evolution.
Resumo:
The cis/trans isomer ratios of the Xaa-Pyr (Pyr = pyrrolidine) 3 degrees amide bonds are significantly high (similar to 90% cis) in the novel peptidomimetics where Pyr contains 1,3-oxazine (Oxa) or 1,3-thiazine (Thi) at its 2 position. We find that an unusual n -> pi(i-1)* interaction, selectively stabilizes the cis conformer and the n X n repulsion destabilizes the trans conformer of these molecules. Both these electronic effects oppose the steric effects in the 3 degrees amide bond. The structural requirements for manifestation of these electronic effects are determined. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new class of sulfone linked bis heterocycles viz., pyrrolyl/pyrazolyl arylaminosulfonylmethyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, and 1,2,4-triazoles were prepared and tested for antimicrobial activity and cytotoxicity. The chloro-substituted compounds 5c, 8c and 14c showed comparable antibacterial activity to chloramphenicol against Pseudomonasaeruginosa and compound 5c exhibited comparable antifungal activity to ketoconazole against Penicilliumchrysogenum. One of the compounds, vinylsulfonyl oxadiazole showed appreciably cytotoxic activity on A549 lung carcinoma cells with an IC50 at a concentration of 31.7 mu M. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel beta-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-(LFVPPLFV)-P-D-P-L-OMe (peptide 1) favors the beta-hairpin conformation nucleated by the type II' beta-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded beta-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C-alpha-C-beta(chi(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
Resumo:
New ternary copper (II) complexes, Cu(L-orn)(B)(Cl)](Cl center dot 2H(2)O) (1-2) where L-orn is L-ornithine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1) and 1,10-phenanthroline (phen, 2), were synthesized and characterized by various spectroscopic techniques. Complex 2 is characterized by the X-ray single crystallographic method. The complex shows a distorted square-pyramidal (4 + 1) CuN3OCl coordination sphere. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. Complex 2 shows appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA). The complexes were subjected to in vitro cytotoxicity studies against carcinomic human alveolar basal epithelial cells (A-549) and human epithelial (HEp-2) cells. The IC50 values of 1 and 2 are less than that of cisplatin against HEp-2 cell lines. MIC values for 1 against the bacterial strains Streptococcus mutans and Pseudomonas aeruginosa are 0.5 mM. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RTPCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon (IFN), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumins ability to hinder the bactericidal action of ciprofloxacin and IFN might significantly augment Salmonella pathogenesis.
Resumo:
Recently, we have demonstrated that the protease domain of NS3 alone can bind specifically to hepatitis C virus (HCV) internal ribosome entry site (IRES) near the initiator AUG, dislodges human La protein and inhibits translation in favor of viral RNA replication. Here, by using a computational approach, the contact points of the protease on the HCV IRES were putatively mapped. A 30-mer NS3 peptide was designed from the predicted RNA-binding region that retained RNA-binding ability and also inhibited IRES-mediated translation. This peptide was truncated to 15 mer and this also demonstrated ability to inhibit HCV RNA-directed translation as well as replication. More importantly, its activity was tested in an in vivo mouse model by encapsulating the peptide in Sendai virus virosomes followed by intravenous delivery. The study demonstrates for the first time that the HCV NS3-IRES RNA interaction can be selectively inhibited using a small peptide and reports a strategy to deliver the peptide into the liver.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Due to limited available therapeutic options, developing new lead compounds against hepatitis C virus is an urgent need. Human La protein stimulates hepatitis C virus translation through interaction with the hepatitis C viral RNA. A cyclic peptide mimicking the beta-turn of the human La protein that interacts with the viral RNA was synthesized. It inhibits hepatitis C viral RNA translation significantly better than the corresponding linear peptide at longer post-treatment times. The cyclic peptide also inhibited replication as measured by replicon RNA levels using real time RT-PCR. The cyclic peptide emerges as a promising lead compound against hepatitis C.
Resumo:
The incorporation of beta-amino acid residues into the antiparallel beta-strand segments of a multi-stranded beta-sheet peptide is demonstrated for a 19-residue peptide, Boc-LV(beta)FV(D)PGL(beta)FVVL(D)PGLVL(beta)FVV-OMe (BBH19). Two centrally positioned (D)Pro-Gly segments facilitate formation of a stable three-stranded beta-sheet, in which beta-phenylalanine ((beta)Phe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR-derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well-defined three-stranded beta-sheet structure in solution. Cross-strand interactions between (beta)Phe3/(beta)Phe17 and (beta)Phe3/Val15 residues define orientations of these side-chains. The observation of close contact distances between the side-chains on the N- and C-terminal strands of the three-stranded beta-sheet provides strong support for the designed structure. Evidence is presented for multiple side-chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three-stranded beta-sheet structures, which in turn influences the conformational interconversion between type I' and type II' beta-turns at the two (D)Pro-Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc-LV(beta)FV(D)PGL(beta)FVV-OMe (BBH10), which has been previously characterized as a type I' beta-turn nucleated hairpin, is shown to favour a type II' beta-turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.
Resumo:
The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.
Resumo:
A new class of sulfonamidomethane pyrrolyl-oxadiazoles/thiadiazoles and pyrazolyl-oxadiazoles/thiadiazoles was prepared from arylsulfonylaminoacetic acid hydrazides and E-cinnamic acid. The lead compounds were tested for antimicrobial and cytotoxic activities. The thiadiazole compounds having chloro substituent on the aromatic ring 4c, 8c and 10c exhibited comparable antibacterial activity against Pseudomonas aeruginosa and also antifungal activity against Penieillium ehrysogenunz. The styryl oxadiazole compound 3c showed appreciable cytotoxic activity on A549 lung carcinoma cells which can be used as a lead compound in the future studies.