112 resultados para Antibodies, Monoclonal -- immunology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic filariasis is the second leading cause of permanent long-term disability globally and control of this disease needs efficient diagnostic methods. In this study, abundantly expressing microfilarial sheath protein (Shp-1) from Brugia malayi was characterized as a filarial diagnostic candidate using samples from different clinical population. Monoclonal antibodies were developed against E. coil expressed recombinant Shp-1 in order to assess its efficiency in filarial antigen detection assay system. Endemic Normal (EN, n = 170), asymptomatic microfilaeremics (MF, n = 65), symptomatic chronic pathology (CP, n = 45) and non endemic normal (NEN, n = 10) sera were analyzed by antigen capture enzyme-linked immunosorbent assay. Of the 290 individuals, all MF individuals (both brugian and bancroftian) were positive in this assay followed by CP and EN. When compared with SXP-1 and Og4C3 antigen assays, all assays detected Wb MF correctly, Bm MF was detected by Shp-1 and SXP-1 assays, and only Shp-1 was able to detect EN (12%) and CP (29%). Results showed that this assay may be useful for monitoring prior to mass drug administration. (c) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2009 pandemic H1N1 S-OIV (swine origin influenza A virus) caused noticeable morbidity and mortality worldwide. In addition to vaccine and antiviral drug therapy, the use of influenza virus neutralizing monoclonal antibodies (MAbs) for treatment purposes is a viable alternative. We previously reported the isolation of a high affinity, potently neutralizing murine MAb MA2077 against 2009 pandemic H1N1 virus. We describe here the humanization of MA2077 and its expression in a mammalian cell line. Six complementarity-determining regions (CDRs) of MA2077 were grafted onto the human germline variable regions; along with six and eight back mutations in the framework of heavy and light chains, respectively, pertaining to the vernier zone and interchain packing residues to promote favorable CDR conformation and facilitate antigen binding. The full length humanized antibody, 2077Hu2, expressed in CHO-K1 cells, showed high affinity to hemagglutinin protein (K-D = 0.75 +/- 0.32 nM) and potent neutralization of pandemic H1N1 virus (IC50 = 0.17 mu g/mL), with marginally higher IC50 as compared to MA2077 (0.08 mu g/mL). In addition, 2077Hu2 also retained the epitope specificity for the ``Sa'' antigenic site on pandemic HA. To the best of our knowledge, this is the first report of a humanized neutralizing antibody against pandemic H1N1 virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic filariasis is a parasitic disease of tropical countries. This is a disfiguring and painful disease contracted in childhood, but the symptoms become apparent only in later years. Diagnosis of filarial infection is very crucial for the management of the disease. The main objective of this study was to develop a filarial antigen-based immunological assay for the diagnosis and surveillance of the disease. Monoclonal and polyclonal antibodies were raised to the recombinant protein Brugia malayi vespid allergen homologue (VAH). Capture enzyme-linked immunosorbent assay (ELISA) was standardized utilizing various combinations of antibodies and evaluated with serum samples of endemic normal (EN, n = 110), microfilaraemic (MF, n = 65), chronic pathology (CP, n = 45) and non-endemic normal (NEN, n = 10) individuals. Of the 230 samples tested, VAHcapture assay detected circulating antigen in 97.91% of bancroftian and 100% of brugian microfilaraemic individuals, and 5% of endemic normal individuals, comparable to the earlier reported SXP-1 antigen detection assay. However, the combination of VAH and SXP-1 (VS) capture ELISA was found to be more robust, detecting 100% of microfilaraemic individuals and with higher binding values. Thus an antigen capture immunoassay has been developed, which can differentiate active infection from chronic infection by detecting circulating filarial antigens in clinical groups of endemic areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the ``Gain-offunction'' mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated ``opening'' resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 mu g/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 mu g/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal epidemics caused by influenza A (H1 and H3 subtypes) and B viruses are a major global health threat. The traditional, trivalent influenza vaccines have limited efficacy because of rapid antigenic evolution of the circulating viruses. This antigenic variability mediates viral escape from the host immune responses, necessitating annual vaccine updates. Influenza vaccines elicit a protective antibody response, primarily targeting the viral surface glycoprotein hemagglutinin (HA). However, the predominant humoral response is against the hypervariable head domain of HA, thereby restricting the breadth of protection. In contrast, the conserved, subdominant stem domain of HA is a potential ``universal'' vaccine candidate. We designed an HA stem-fragment immunogen from the 1968 pandemic H3N2 strain (A/Hong Kong/1/68) guided by a comprehensive H3 HA sequence conservation analysis. The biophysical properties of the designed immunogen were further improved by C-terminal fusion of a trimerization motif, ``isoleucine-zipper'', or ``foldon''. These immunogens elicited cross-reactive, antiviral antibodies and conferred partial protection against a lethal, homologous HK68 virus challenge in vivo. Furthermore, bacterial expression of these immunogens is economical and facilitates rapid scale-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12 h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease. (C) 2015 Elsevier B.V. All rights reserved.