139 resultados para Alkali lands
Resumo:
Glasses of the alkali tin phosphate system have been investigated. The infrared absorption and fluorescence spectra of the glasses have been examined. It is found that tin is present in both + 2 and + 4 oxidation states. Also tin ions occupy four- or six-coordinated sites in the glass.
Resumo:
Pyridinium hexafluorotitanate, (C5H5NH)(2)TiF6, has been prepared by the reaction of titanium metal with pyridinium poly(hydrogen fluoride), PPHF, at room temperature. Making use of (C5H5NH)(2)TiF6 as a precursor, ammonium and alkali metal hexafluorotitanates, M(2)TiF(6) (M = NH4, Na, K, Rb and Cs) have been synthesized by metathesis. These hexafluorotitanates have been characterized by chemical analyses, infrared and NMR (H-1 and F-19) spectroscopy and powder X-ray diffraction methods. Indexed powder X-ray diffraction data for Rb2TiF6 and Cs2TiF6 have been reported.
Resumo:
A novel phase of nickel hydroxide with an average interlayer spacing 5.4-5.6 Angstrom has been synthesized which is neither ct nor beta type but is an interstratification of both. It ages to the beta form in strong alkali. These observations have implications on the dissolution-reprecipitation mechanism suggested for the alpha-->beta transformation of nickel hydroxide.
Resumo:
The moist tropical forests of the Western Ghats of India are pockmarked with savanna-grasslands created and managed by local agricultural communities. A sample of such savanna-grasslands with differing growing conditions was studied in terms of peak above-ground biomass, monthly growth, and cumulative production under different clipping treatments. The herblayer was found to be dominated by perennial C4 grasses, with Eulalia trispicata, Arundinella metzii and Themeda triandra being common to all sites. Peak biomass ranged between 3.3-5.9 t/ha at sites most favourable for grass production. Across these sites, peak biomass was found to be inversely related to the number of rainy days during the growing season, suggesting that growth may be light-limited. This hypothesis is supported by the observation that growth is most rapid immediately after the easing of the monsoon. Single clips early in the growing season had no negative or a slightly positive effect on production, but mid-season single clips or continuous frequent clipping reduced production by as much as 40%. The results suggest that, while indiscriminate grazing may certainly be deleterious, it is possible to obtain sustained high yields from forest lands managed for grass production without totally excluding grazing.
Resumo:
Cd(0.75)PS(3)A(0.5)(H2O)(y) [A = Na, K and Cs], synthesized by the ion-exchange intercalation reaction of the insulating layered CdPS3, exhibits interesting electrical properties. The electrical properties are strongly dependent on the extent of hydration of the alkali ion which resides in the interlamellar space. In the potassium and caesium ion-exchanged compounds, y = I, the lattice expansion is similar to 3 Angstrom and the electric response characteristic of a dielectric. In the as prepared A = Na compound, y = 2, the lattice expansion is 5.6 Angstrom, the compound is conducting with a DC conductance of 3 x 10(-5) S cm(-1) at 300 K. Cd0.75PS3Na0.5(H2O)(y), y = 2, on evacuation or on heating looses water, reversibly, to form a y = 1 phase with electrical properties similar to that of the K and Cs ion exchange intercalation compounds.
Resumo:
This paper analyses environmental and socio-economic barriers for plantation activities on local and regional level and investigates the potential for carbon finance to stimulate the increased rates of forest plantation on wasteland, i.e., degraded lands, in southern India. Building on multidisciplinary field work and results from the model GCOMAP, the aim is to (1) identify and characterize the barriers to plantation activities in four agro-ecological zones in the state of Karnataka and (2) investigate what would be required to overcome these barriers and enhance the plantation rate and productivity. The results show that a rehabilitation of the wasteland based on plantation activities is not only possible but also anticipated by the local population and would lead to positive environmental and socio-economic effects at a local level. However, in many cases, the establishment of plantation activities is hindered by a lack of financial resources, low land productivity and water scarcity. Based on the model used and the results from the field work, it can be concluded that certified emission reductions such as carbon credits or other compensatory systems may help to overcome the financial barrier; however, the price needs to be significantly increased if these measures are to have any large-scale impact.
Resumo:
Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.
Resumo:
A hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) containing Co(II), Ni(II) and Cu(II) ions was prepared by curing N-MPGE and tetradentate Schiff base Co(II), Ni(II) and Cu(II) complexes. The curing polymerization reaction of N-MPGE with metal complexes as curing agents was studied. The cured samples were studied for thermal stability, chemical (acid/alkali/solvent) and water absorption resistance and homogeneity of the cured systems. The tetradentate Schiff base, 3-(Z)-2-piperazin-1-yl-ethylimino]-1,3-dihydro indol-2-one was synthesized by the condensation of Isatin (Indole-2, 3-dione) with 1-(2-aminoethyl)piperazine (AEP). Its complexes with Co(II), Ni(II) and Cu(II) have been synthesized and characterized by microanalysis, conductivity, Uv-Visible, FT-IR, TGA and magnetic susceptibility measurements. The spectral data revealed that the ligand acts as a neutral tetradentate Schiff base and coordinating through the azomethine nitrogen, two piperazine nitrogen atoms and carbonyl oxygen.
Resumo:
We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.
Resumo:
We have studied the metal-insulator transition at integer fillings in a triply degenerate Hubbard model using the Lanczos method. The critical Coulomb interaction strength U-c, is found to depend strongly on the band filling, with U-c similar to root 3 W (W is the bandwidth) at half filling for this case with threefold degeneracy. We discuss the implications of our results on metal-insulator transitions in strongly correlated systems in general, and on the unusual electronic ground state of the alkali-metal-doped fullerenes, in particular. [S0163-1829(99)11003-8].
Resumo:
Several vanadium, tungsten, and molybdenum oxide bronzes have been prepared using microwave irradiation. Metal oxides and alkali metal iodides were used as starting materials, Intermittent grinding and inert atmosphere were found to be necessary for the synthesis of most of the bronzes, The reaction temperatures are remarkably lower than those employed for conventional synthetic techniques and the microwave assisted reactions proceed at extremely fast rates. The microwave synthesized bronzes consist of particles having long, rectangular rod-like morphology. (C) 1999 Academic Press.
Resumo:
A series of bile acid-based crown ethers (7a-c,12 and 13) were easily constructed from readily available precursors. Measurement of association constants (K-a) with alkali metal picrates in CHCl3 showed that azacrown ethers 7a-c and Chola-Cuowns 12 and 13 show greater binding towards Rb+ and K+. The presence of the aromatic moieties showed subtle changes in the binding properties. Insight II minimized structures show very different conformations of aromatic units in 7a-b and 13.
Resumo:
Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.
Resumo:
A polyphosphate ester was synthesized by interfacial polycondensation of bisphenol-A and phenylphosphorodichloridate. Accelerated hydrolytic degradation studies were conducted under alkaline conditions. The effect of concentration of alkali and temperature were monitored. The rate of degradation reached a maximum value at 6 molar sodium hydroxide solution and then reduced. The activation energy for hydrolytic degradation was found to be 45 kcal/mol. Diffusion of alkali into the polymer pellet was studied at various concentrations of alkali and at various temperatures. The rate of diffusion also attained a maximum at 6M NaOH and the activation energy for diffusion process was found to be 12 kcal/mol. (C) 2002 John Wiley Sons, Inc.