141 resultados para AQUEOUS TWO-PHASE SYSTEM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fixed and mobile relays are used, among other applications, in the downlink of cellular communications systems. Cooperation between relays can greatly increase their benefits in terms of extended coverage, increased reliability, and improved spectral efficiency. In this paper, we introduce the fundamental notion of asymmetric cooperation. For this, we consider a two-phase transmission protocol where, in the first phase, the base station (BS) sends several available messages to the relays over wireless links. But, depending on the channel state and the duration of the BS transmission, not all relays decode all messages. In a second phase, the relays, which may now have asymmetric message knowledge, use cooperative linear precoding for the transmission to the mobile stations. We show that for many channel configurations, asymmetric cooperation, although (slighlty) sub-optimum for the second phase, is optimum from a total-throughput point of view, as it requires less time and energy in the first phase. We give analytical formulations for the optimum operating parameters and the achievable throughput, and show that under typical circumstances, 20-30% throughput enhancement can be achieved over conventional systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of scheduling semiconductor burn-in operations, where burn-in ovens are modelled as batch processing machines. Most of the studies assume that ready times and due dates of jobs are agreeable (i.e., ri < rj implies di ≤ dj). In many real world applications, the agreeable property assumption does not hold. Therefore, in this paper, scheduling of a single burn-in oven with non-agreeable release times and due dates along with non-identical job sizes as well as non-identical processing of time problem is formulated as a Non-Linear (0-1) Integer Programming optimisation problem. The objective measure of the problem is minimising the maximum completion time (makespan) of all jobs. Due to computational intractability, we have proposed four variants of a two-phase greedy heuristic algorithm. Computational experiments indicate that two out of four proposed algorithms have excellent average performance and also capable of solving any large-scale real life problems with a relatively low computational effort on a Pentium IV computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high temperature region of the MnO-A1203 phase diagram has been redetermined to resolve some discrepancies reported in the literature regarding the melting behaviour of MnA1,04. This spinel was found to melt congruently at 2108 (+ 15) K. Theactivity of MnOin MnO-Al,03 meltsand in the two phase regions, melt + MnAI,04 and MnAI2O4 + A1203, has been determined by measuring the manganese concentration in platinum foils in equilibrium under controlled oxygen potentials. The activity of MnO obtained in this study for M ~ O - A I ,m~el~ts is in fair agreement with the results of Sharma and Richardson.However. the alumina-rich melt is found to be in equilibrium with MnAl,04 rather than AI2O3. as suggested by ~ha rmaan d Richardson. The value for the acthity of MnO in the M~AI ,O,+ A1,03 two phaseregion permits a rigorous application of the Gibbs-Duhem equation for calculating the activity of A1203 and the integral Gibbs' energy of mixing of MnO-A1203 melts, which are significantly different from those reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present article reviews some of the current work on a new class of materials which are nanoscale granular materials. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. Known as nanoembedded materials, nanocomposites or ultrafine granular materials, this class of materials has attracted attention because of the opportunity of basic studies on the effect of size and embedding matrix on transformation behaviors as well as some novel properties, which include structural, magnetic and transport properties. These are in addition to the tremendous interests in what is known as quantum structures(embedded particles size less than 5 nm) for the case of semiconductors, which will not be discussed here. We shall primarily review the work done on metallic systems where the dispersed phases have low melting points and borrow extensively from the work done in our group. The phase transformations of the embedded particles show distinctive behavior and yield new insights. We shall first highlight briefly the strategy of synthesis of these materials by non-equilibrium processing techniques, which will be followed by examples where the effect of length scales on phase transformation behaviors like melting and solidification are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The loop heat pipe (LHP) is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications such as in avionics cooling and submarines. A major advantage of a loop heat pipe is that the porous wick structure is confuned to the evaporator section, and connection between the evaporator and condenser sections is by smooth tubes, thus minimizing pressure drop. A brief overview of loop heat pipes with respect to basic fundamentals, construction details, operating principles, and typical operating characteristics is presented in this paper. Finally, the paper presents the current developments in modeling of thermohydraulics and design methodologies of LHPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Practical usage of machine learning is gaining strategic importance in enterprises looking for business intelligence. However, most enterprise data is distributed in multiple relational databases with expert-designed schema. Using traditional single-table machine learning techniques over such data not only incur a computational penalty for converting to a flat form (mega-join), even the human-specified semantic information present in the relations is lost. In this paper, we present a practical, two-phase hierarchical meta-classification algorithm for relational databases with a semantic divide and conquer approach. We propose a recursive, prediction aggregation technique over heterogeneous classifiers applied on individual database tables. The proposed algorithm was evaluated on three diverse datasets. namely TPCH, PKDD and UCI benchmarks and showed considerable reduction in classification time without any loss of prediction accuracy. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congruent oxidation occurs when an alloy oxidizes at constant oxygen chemical potential and temperature to an oxide in which the ratio of metallic components is the same as in the alloy. In alloys that undergo congruent oxidation concentration gradients near the surface are minimized. In this work thermodynamic conditions for congruent oxidation of binary and ternary alloys are formulated using the regular solution model to describe thermodynamic mixing properties. The conditions under which congruent oxidation can occur are identified. Congruent oxidation of a binary alloy X-Y will occur only if difference in oxygen potential for the oxidation of the two pure metals is less than twice the difference in regular solution parameters for the oxide and alloy phases (Omega(O)-Omega(A)). In the case of ternary alloys, congruency requirements for both two-phase and three-phase equilibria are discussed. Since the conditions for congruent oxidation of ternary alloy X-Y-Z depends on many parameters, the effect of systematic variation of the binary sets of regular solution parameters on the congruent composition is explored by numerical solution of the governing equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.