152 resultados para AMASSEDS-III
Preparation, Characterization And Thermal-Stability Of Ammonium Trioxalatocobaltate (Iii) Trihydrate
Resumo:
Emf measurements on the galvanic cell Pt, Ta, In + In,O, / Tho,-Y,03 / Cu + C+O, Pt were used to obtain the standard free energy of formation of 1%03fr om 600 to 900°C. Differential thermal analysis was used to detect the decomposition of In2(S0,), under controlled SO2 + O2 + Ar mixtures in thqtemperature range 640-8wC. X-ray diffraction analysis indicated that the decomposition product was 1%03 without an oxywlphate intermediate. The following equations were obtained for the variation of the standard free-energy change(Jlmole) with temperature:
Resumo:
Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO3)] (1, 2), [Ln(pydppz)(acac)(2)(NO3)] (3, 4) and [La(pydppz)(anacac)(2)(NO3)] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c] phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO6N3 coordination. The pydppz complexes 3-5 show an electronic spectral band at similar to 390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K-b in the range of 5.4 10(4)-1.2 x 10(6) M-1. Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC50 value of 0.16(+/- 0.01), 0.15(+/- 0.01) and 0.26 +/-(0.02) mu M in UV-A light of 365 nm, while they are less toxic in dark with an IC50 value of >3 mu M. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.
Resumo:
Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod(2) and a heterotetrameric Res(2)Mod(2) complex. The Mod subunit in M-2 or R2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3D-DNA looping have been proposed.
Resumo:
Four new 2-oxo-1,2-dihydrobenzoh]quinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H-2-LR, where R = H, Me, Et or Ph) and their corresponding new cobalt(III) complexes have been synthesized and characterized. The structures of the complexes 2 and 3 were determined by single crystal X-ray diffraction analysis. The interactions of the new complexes with DNA were investigated by absorption, emission and viscosity studies which indicated that the complexes bind to DNA via intercalation. Antioxidant studies of the new complexes showed that the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of complexes 1-4 against A549 cell line was assayed which showed higher cytotoxic activity with lower IC50 values indicating their efficiency in killing the cancer cells even at very low concentrations. (C) 2012 Elsevier Masson SAS. All rights reserved.