168 resultados para 90 Degrees Bend
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.
Resumo:
A simple technique is devised to measure the angles of 90-, 45-, 45-deg and 60-, 30-, 90-deg prisms without using expensive spectrometers, autocollimators, and angle gauges. The method can be extended to unpolished and opaque prisms made of materials other then glass. (C) 1997 Society of Photo-Optical instrumentation Engineers.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.
Resumo:
In this work, the incubation period for the onset of sphalerite to wurtzite transformation in isolated ZnS nanoparticles 2 to 7 nm in size was determined via the in situ isothermal annealing of as-synthesized sphalerite nanoparticles in a transmission electron microscope (TEM). Nanoparticles sitting on the TEM grid were well separated from each other in order to minimize particle sintering during the annealing operation. The phase transformation onset was observed at 300 degrees C, 350 degrees C, and 400 degrees C after 90, 10, and 4 min, respectively. These time-temperature data for the phase transformation onset were then used to calculate the activation energy for the nucleation of the wurtzite phase in 2 to 7 nm sphalerite particles. The activation energy determined was 24 Kcal/mol. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3622625]
Resumo:
A series of novel hexasubstituted cyclophosphazene hydrazones [N(3)P(3)(-OC(6)H(4)-p-CH=N-NH-C(O)-C(6)H(4)-p-X)(6)] (X = H, Br, Cl, F, OH, OCH(3), CH(3), NO(2), NH(2)) were prepared by a sixfold condensation reaction of [N(3)P(3)(-OC(6)H(4)-p-CHO)(6)] with para-substituted benzoic hydrazides [NH(2)-NH-C(O)-C(6)H(4)-p-X] with excellent yields (91-98%). The structures of the compounds were confirmed by elemental analysis, FT-IR, (1)H, (13)C, (31)P, 2D-HSQC NMR and mass spectrometry (MALDI-TOF). All the synthesized cyclophosphazene hydrazones exhibit high thermal stability. The crystal structure of a homogeneously substituted hexakis(4-formylphenoxy)-cyclotriphosphazene was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic system, space group P2(1)/n with a = 16.558(3) angstrom, b = 10.250(2) angstrom, c = 23.429(5) angstrom, alpha = gamma = 90.00 degrees, beta = 90.461(4)degrees, V = 3976.5(14) angstrom(3) and Z = 4. The R value is 0.0823 for 4290 observed reflections. The conformations of the 4-formylphenoxy-groups are different at the three phosphorus atoms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Copper (II) oxide (CuO)/multiwall carbon nanotube (MWNT) thin film based ethanol-sensors were fabricated by dispersing CVD-prepared MWNTs in varying concentration over DC magnetron sputtered-CuO films. The responses of these sensors as a function of MWNT concentrations and temperatures were measured, and compared. The sensing response was the maximum at an operating temperature near 400 degrees C for all the samples irrespective of the MWNTs dispersed over them. At optimum operating temperature (T(opt)) of 407 +/- 1 degrees C, the response is linear for 100-700 ppm range and tends to saturate at higher concentrations. In comparison with bare CuO sample, the response of CuO/MWNT sensing films increased up to 50% in the linear range. The response improvement for 2500 ppm of ethanol was up to 90% compared to bare CuO sample. In addition, the sensing response time also reduced to around 23% for lowest ethanol concentration at T(opt). However, a decrease in the sensor response was observed on films with very high concentrations of MWNTs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phase relations in the pseudoternary system NiO-CaO-SiO2 at 1373 K are established. The coexisting phases are identified by X-ray diffraction and energy-dispersive X-ray analysis of equilibrated samples. There is only one quaternary oxide CaNiSi2O6 with clinopyroxene structure. The Gibbs energy of formation of CaNiSi2O6 is measured using a solid state galvanic cell incorporating stabilized zirconia as the solid electrolyte in the temperature range of 1000 to 1400 K:Pt, Ni + SiO2 + CaSiO3 + CaNiSi2O6 \ (Y2O3)ZrO2 \ Ni + NiO, Pt From the electromotive force (emf) of the cell, the Gibbs energy of formation of CaNiSi2O6 from NiO, SiO2, and CaSiO3 is obtained. To derive the Gibbs energy of formation of the quaternary oxide from component binary oxides, the free energy of formation of CaSiO, is determined separately using a solid state cell based on single crystal CaF2 as the electrolyte: Pt, O-2, CaO + CaF2 \ CaF2 \ CaSiO3 + SiO2 + CaF2, O-2, Pt The results can be expressed by the following equations: NiO (r.s) + CaO (r.s) + 2SiO(2) (qz) --> CaNiSi2O6 (pyr) Delta G degrees = -115,700 + 10.63T (+/-100) J mol(-1) CaO (r.s) + SiO2 (qz) --> CaSiO3 (wol) Delta G degrees = -90,030 -0.61T (+/-60) J mol(-1).
Resumo:
We consider the one-way relay aided MIMO X fading Channel where there are two transmitters and two receivers along with a relay with M antennas at every node. Every transmitter wants to transmit messages to every other receiver. The relay broadcasts to the receivers along a noisy link which is independent of the transmitters channel. In literature, this is referred to as a relay with orthogonal components. We derive an upper bound on the degrees of freedom of such a network. Next we show that the upper bound is tight by proposing an achievability scheme based on signal space alignment for the same for M = 2 antennas at every node.
Resumo:
Acetate kinase (AckA) catalyzes the reversible transfer of a phosphate group from acetyl phosphate to ADP, generating acetate and ATP, and plays a central role in carbon metabolism. In the present work, the gene corresponding to AckA from Salmonella typhimurium (StAckA) was cloned in the IPTG-inducible pRSET C vector, resulting in the attachment of a hexahistidine tag to the N-terminus of the expressed enzyme. The recombinant protein was overexpressed, purified and crystallized in two different crystal forms using the microbatch-under-oil method. Form I crystals diffracted to 2.70 angstrom resolution when examined using X-rays from a rotating-anode X-ray generator and belonged to the monoclinic space group C2, with unit-cell parameters a = 283.16, b = 62.17, c = 91.69 angstrom, beta = 93.57 degrees. Form II crystals, which diffracted to a higher resolution of 2.35 angstrom on the rotating-anode X-ray generator and to 1.90 angstrom on beamline BM14 of the ESRF, Grenoble, also belonged to space group C2 but with smaller unit-cell parameters (a = 151.01, b = 78.50, c = 97.48 angstrom, beta = 116.37 degrees). Calculation of Matthews coefficients for the two crystal forms suggested the presence of four and two protomers of StAckA in the asymmetric units of forms I and II, respectively. Initial phases for the form I diffraction data were obtained by molecular replacement using the coordinates of Thermotoga maritima AckA (TmAckA) as the search model. The form II structure was phased using a monomer of form I as the phasing model. Inspection of the initial electron-density maps suggests dramatic conformational differences between residues 230 and 300 of the two crystal forms and warrants further investigation.
Resumo:
In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.
Resumo:
Although some researchers have published friction and wear data of Plasma Nitride (PN) coatings, the tribological behavior of PN/PN Pairs in high vacuum environment has not been published so far In order to bridge this knowledge gap, tribological tests under dry conditions have been conducted on PN/PN Pairs for varying temperatures of 25, 200, 400 and 500 degrees C in high vacuum (1.6 x 10(-4) bar) environment. The PN coatings showed good wear resistance layer on the ring surface. The PN coatings were removed only from the pin surface for all the tests since it contacts at a point. The friction and wear were low at lower temperatures and it eliminated adhesion between the contact surfaces until the coating was completely removed from the pin surface. (C) 2011 Journal of Mechanical Engineering. All rights reserved.
Resumo:
Nanocrystalline zinc ferrite (ZFO) has been synthesized from metal acetylacetonates by microwave irradiation for 5 min in the presence of a surfactant. The as-prepared material is ZFO and has been subjected in air to conventional furnace annealing and to rapid annealing at different temperatures. Both annealing protocols lead to well-crystallized ZFO, with crystallite sizes in the range similar to 8-20 nm, which is ferrimagnetic, even at room temperature, with magnetization attaining saturation. While the magnetization M(S) of conventionally annealed ZFO varies with crystallite size in the expected manner, rapid annealing leads to high M(S) even when the crystallite size is relatively large. The coercivity is greater in the conventionally annealed ZFO. Thermal and magnetic measurements suggest that the inhomogeneous site cationic distribution within each crystallite caused by rapid annealing can be used to tailor the magnetic behaviour of nanocrystalline ferrites.
Resumo:
Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.