115 resultados para 7136-129
Resumo:
Accuracy in tree woody growth estimates is important to global carbon budget estimation and climate-change science. Tree growth in permanent sampling plots (PSPs) is commonly estimated by measuring stem diameter changes, but this method is susceptible to bias resulting from water-induced reversible stem shrinkage. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. We propose and test a novel approach for estimating and correcting this bias at the community level. In a 50-ha PSP from a seasonally dry tropical forest in southern India, where tape measurements have been taken every four years from 1988 to 2012, for nine trees we estimated bias due to reversible stem shrinkage as the difference between woody growth measured using tree rings and that estimated from tape. We tested if the bias estimated from these trees could be used as a proxy to correct bias in tape-based growth estimates at the PSP scale. We observed significant shrinkage-related bias in the growth estimates of the nine trees in some censuses. This bias was strongly linearly related to tape-based growth estimates at the level of the PSP, and could be used as a proxy. After bias was corrected, the temporal variance in growth rates of the PSP decreased, while the effect of exceptionally dry or wet periods was retained, indicating that at least a part of the temporal variability arose from reversible shrinkage-related bias. We also suggest that the efficacy of the bias correction could be improved by measuring the proxy on trees that belong to different size classes and census timing, but not necessarily to different species. Our approach allows for reanalysis - and possible reinterpretation of temporal trends in tree growth, above ground biomass change, or carbon fluxes in forests, and their relationships with resource availability in the context of climate change. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.
Resumo:
Objective: The aim of this study is to validate the applicability of the PolyVinyliDene Fluoride (PVDF) nasal sensor to assess the nasal airflow, in healthy subjects and patients with nasal obstruction and to correlate the results with the score of Visual Analogue Scale (VAS). Methods: PVDF nasal sensor and VAS measurements were carried out in 50 subjects (25-healthy subjects and 25 patients). The VAS score of nasal obstruction and peak-to-peak amplitude (Vp-p) of nasal cycle measured by PVDF nasal sensors were analyzed for right nostril (RN) and left nostril (LN) in both the groups. Spearman's rho correlation was calculated. The relationship between PVDF nasal sensor measurements and severity of nasal obstruction (VAS score) were assessed by ANOVA. Results: In healthy group, the measurement of nasal airflow by PVDF nasal sensor for RN and LN were found to be 51.14 +/- 5.87% and 48.85 +/- 5.87%, respectively. In patient group, PVDF nasal sensor indicated lesser nasal airflow in the blocked nostrils (RN: 23.33 +/- 10.54% and LN: 32.24 +/- 11.54%). Moderate correlation was observed in healthy group (r = 0.710, p < 0.001 for RN and r = 0.651, p < 0.001 for LN), and moderate to strong correlation in patient group (r = 0.751, p < 0.01 for RN and r = 0.885, p < 0.0001 for LN). Conclusion: PVDF nasal sensor method is a newly developed technique for measuring the nasal airflow. Moderate to strong correlation was observed between PVDF nasal sensor data and VAS scores for nasal obstruction. In our present study, PVDF nasal sensor technique successfully differentiated between healthy subjects and patients with nasal obstruction. Additionally, it can also assess severity of nasal obstruction in comparison with VAS. Thus, we propose that the PVDF nasal sensor technique could be used as a new diagnostic method to evaluate nasal obstruction in routine clinical practice. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Cell voltage for a fully charged-substrate-integrated lead-carbon hybrid ultracapacitor is about 2.3 V. Therefore, for applications requiring higher DC voltage, several of these ultracapacitors need to be connected in series. However, voltage distribution across each series-connected ultracapacitor tends to be uneven due to tolerance in capacitance and parasitic parallel-resistance values. Accordingly, voltage-management circuit is required to protect constituent ultracapacitors from exceeding their rated voltage. In this study, the design and characterization of the substrate-integrated lead-carbon hybrid ultracapacitor with co-located terminals is discussed. Voltage-management circuit for the ultracapacitor is presented, and its effectiveness is validated experimentally.
Resumo:
Longitudinal relaxation due to cross-correlation between dipolar ((HN-1H alpha)-H-1) and amide-proton chemical shift anisotropy (H-1(N) CSA) has been measured in a model tripeptide Piv-(L)Pro-(L)Pro-(L)Phe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).
Resumo:
Eu3+-activated layered LnOCl (Ln=La and Gd) phosphors were synthesized by the conventional solid-state method at relatively low temperature (700 degrees C) and shorter duration of 2 h. The structural parameters were refined by the Rietveld refinement analysis and confirmed by the high resolution transmission electron microscopy (HRTEM). Both the compounds were crystallized in the tetragonal structure with space group P4/nmm (No. 129). The homogeneity of the elements were analyzed by TEM mapping and found to be uniformly distributed. The photoluminescence spectra revealed that the intensity of D-5(0)-> F-7(2) transition (619 nm) was more intense in Eu3+-activated GdOCl compared to LaOCl. This was due to the property of Gd3+ ions to act as an intermediate sublattice to facilitate the energy transfer to Eu3+ ions. Intensity parameters and radiative properties such as transition probabilities, radiative lifetime and branching ratio were calculated using the Judd-Ofelt theory. The CIE color coordinates result revealed that the Eu3+-activated GdOCl (0.641, 0.354) phosphor was close to the commercial red phosphors like, Y2O3:Eu3+ (0.645, 0.347), (Y2OS)-S-2:Eu3+ (0.647, 0.343) and National Television System Committee (NTSC) (0.67, 0.33). The results suggest that the present GdOCl:Eu3+ compound acts as a potential candidate for red phosphor materials.
Resumo:
We report the phase transformations in Portland cement before and after hydration. The hydration mechanism was studied in detail by using a full Rietveld refinement of the X-ray diffraction (XRD) patterns, Fourier Transformed Infra-Red (FTIR) spectroscopy, Thermogravimetric Analysis (TGA) and Mossbauer spectroscopy at room temperature. From the Rietveld refinement of XRD data, alite, belite, celite, brown-millerite and low quartz phases were detected and quantified as major phases in dry cement powder. After hydration, calcium carbonate, portlandite and ettringite phases were found to form. A large reduction in the amounts of alite and belite phases were observed suggesting the formation of amorphous C-S-H phase and emphasizing the role of alite phase in flash setting of cement, as justified by the XRD and FTIR spectroscopy. Mossbauer spectra of all the unset samples showed quadrupole split doublets corresponding to the brownmillerite phase which remains unchanged even after about one week of hydration, suggesting that brownmillerite did not transform to other phases during initial stage of hydration process. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The current study reports on the synthesis and characterization of a new inorganic nano-pigment with an intense blue color and high solar radiation reflective properties (70%). The nano-pigment YIn0.9Mn0.1O3-ZnO was synthesized by a sol-gel combustion method and characterized with the aid of X-Ray diffraction, Raman spectroscopy, Magnetic susceptibility, Transmission electron microscopy, UV ndash;vis-NIR diffuse reflectance spectroscopy and CIE-1976 L*a*b* color measurements. The Rietveld refinement of the XRD patterns of the developed nano-pigment disclosed the existence of YIn0.9Mn0.1O3 and ZnO in a 1:1 ratio with hexagonal crystal structures. For comparison, YIn0.9Mn0.1O3 was also synthesized by the sol gel combustion route and its optical properties compared with that of YIn0.9Mn0.1O3-ZnO. It is interesting to note that the developed YIn0.9Mn0.1O3-ZnO nano-pigmeht exhibits superior blue hue (b* = -40.55) and solar reflectance (R* = 70%) values as compared to the YIn0.9Mn0.1O3 nano-pigment (b* = -22.28, R* = 50%). Most importantly, the potential utility of the nano-pigment as a ``Cool Pigment'' was demonstrated by coating onto roofing materials like aluminum roofing sheets. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The proposed work discusses different parameters which are considered to improve the performance of a tin oxide-based thin film gas sensor. This includes analysing and deducing suitable catalytic additives to enhance the performance of the sensor in terms of selectivity and sensitivity. Chemical sensitization and electronic sensitization are performed to improve the rate of response of the sensor.