179 resultados para 250201 Transition Metal Chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state chemistry was in its infancy when the author got interested in the subject. In this article, the author outlines the manner in which the subject has grown over the last four decades, citing representative examples from his own contributions to the different facets of the subject. The various aspects covered include synthesis, structure, defects, phase transitions, transition metal oxides, catalysts, superconductors, metal clusters and fullerenes. In an effort to demonstrate the breadth and vitality of the subject, the author shares his own experiences and aspirations and gives expression to the agony and ecstacy in carrying out experimental research in such a frontier area in India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New chiral diphosphazane ligands of the type Ph(2)PN(S-*CHMePh)PYY' {YY'= Ph(2) (2), O2C6H4 (3); Y= Ph, Y'= Cl {4a (SS), 4b (SR)}, N(2)C(3)HMe(2)-3,5 {5a (SR), 5b (SS)} are synthesised starting from a chiral aminophosphine, Ph(2)PNH(S-*CHMePh) (1). The structure of one of the diastereomer 5a has been confirmed by single crystal X-ray diffraction {Orthorhombic system, P2(1)2(1)2(1); a=10.456 (4), b=15.362 (7), c=17.379 (6) Angstrom, Z=4}. Transition metal mononuclear complexes [Rh{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}(2)](+)(BF4)(-) (6), [PdCl2{eta(2)-(Ph(2)P)(2)N(S-*CHMePh)}] (7) and [PtCl2{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}] (8) have also been synthesised. The structure of the palladium complex 7 is solved by X-ray crystallography {Orthorhombic system, P2(1)2(1)2(1); a=8.746 (2), b=18.086 (2), c=20.811 (3) Angstrom, Z=4}. All these compounds are characterised by micro analyses, IR and NMR spectroscopic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the formation of hydrogels from sodium cholate solution in the presence of a variety of metal ions (Ca2+, Cu2+, Co2+, Zn2+, Cd2+, Hg2+ and Ag+). Morphological studies of the xerogels by electron microscopy reveal the presence of helical nanofibres. The rigid helical framework in the calcium cholate hydrogel was utilised to synthesize hybrid materials (AuNPs and AgNPs). Doping of transition metal salts into the calcium cholate hydrogel brings out the possibility of synthesising metal sulphide nano-architectures keeping the hydrogel network intact. These novel gel-nanoparticle hybrid materials have encouraging application potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In celebrating Professor C. N. R. Rao's 80th birthday, this article recalls his singular contributions to solid state and materials chemistry for about sixty years. In so doing, the article also traces the growth of the field as a central domain of research in chemical sciences from its early origins in Europe. Although Rao's major work lies in solid state and materials chemistry - a field which he started and nurtured in India while its importance was being recognized internationally - his contributions to other areas of chemistry (and physics), viz., molecular spectroscopy, phase transitions, fullerenes, graphene, nanomaterials and multiferroics are equally significant. Illustrative examples of his work devoted to rare earth and transition metal oxides, defects and nonstoichiometry, metal-insulator transitions, investigation of crystal and electronic structures of a variety of solids by means of electron microscopies and photoelectron spectroscopy, superconducting cuprates, magnetoresistive manganites, multiferroic metal oxides of various structures and, last but not the least, development of new strategies for chemical synthesis of a wide variety of solids including nanomaterials and framework solids in different dimensionalities, are highlighted. The article also captures his exemplary role as a science teacher, science educationist and institution builder in post-Independence India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of valence bands and core levels of solids by photoelectron spectroscopy are described at length. Satellite phenomena in the core level spectra have been discussed in some detail and it has been pointed out that the intensity of satellites appearing next to metal and ligand core levels critically depends on the metal-ligand overlap. Use of photoelectron spectroscopy in investigating metal-insulator transitions and spin-state transitions in solids is examined. It is shown that relative intensities of metal Auger lines in transition metal oxides and other systems provide valuable information on the valence bands. Occurrence of interatomic Auger transitions in competition with intraatomic transitions is discussed. Applications of electron energy loss spectroscopy and other techniques of electron spectroscopy in the study of gas-solid interactions are briefly presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis and structures of several new oxides containing bismuth are described. Three types of structures are common among the multinary oxides containing trivalent bismuth. They are the sillenite structure of γ-Bi2O3, the layered perovskite structure of Aurivillius phases and the pyrochlore structure. The influence of Bi3+∶6s 2 lone pair electrons is seen in all the three structures. In transition metal oxides containing trivalent bismuth,d o cations (Ti4+, Nb5+, W6+) stabilize the layered perovskite structure, while cations containing partially-filledd orbitals (V4+, Cr3+, Fe3+) favour pyrochlore-related structures. Ferroelectric distortion ofMO6 octahedra of thed o cations seems to play an important role in stabilizing layered perovskite structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semiconductivity inMTiO3 (M=Ba, Sr) in the temperature range of practical applications is greatly influenced by the electronic charge redistribution among the acceptor states, arising from the frozen cation vacancies as well as the transition metal ion impurities. The conductivity measurements and defect chemistry investigations above 800 K indicate that the predominant lattice defects areM− and oxygen vacancies. There is dominantp-type conduction at higherP O 2 values in acceptor doped materials at high temperatures. However, they are insulating solids around room temperature due to the redistribution of electrons between the neutral, singly-or doubly-ionised acceptor states. Results fromepr and resistivity measurements show that the above charge redistribution is dependent on crystal structure changes. Hence the electron or hole loss by the acceptor states is influenced by the soft modes which also accounts for the differences in electrical properties of BaTiO3 and SrTiO3. The results are also useful in explaining the positive temperature coefficient in resistance and some photo-electrochemcial properties of these solids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures and electronic relationship of 9-, 10-, 11-, and 12-vertex closo and hypercloso (isocloso) etallaboranes are explored using OFT calculations. The role of the transition metal in stabilizing the hypercloso borane structures is explained using the concept of orbital compatibility. The hypercloso structures, C6H6MBn-1Hn-1 (n = 9-12; M = Fe, Ru, and Os) are taken as model complexes. Calculations on metal free polyhedral borane BnHn suggest that n vertex hypercloso structures need only n skeleton electron pairs (SEPs), but the structure will have one or more six-degree vertices, whereas the corresponding closo structures with n + 1 SEPs have only four- and five-degree vertices. This high-degree vertex of hypercloso structures can be effectively occupied by transition metal fragments with their highly diffused orbitals. Calculations further show that a heavy transition metal with more diffused orbitals prefers over a light transition metal to form hypercloso geometry, This is in accordance with the fact that there are more experimentally characterized hypercloso structures with the heavy transition metals. The size of the exohedral ligands attached to the metal atom also plays a role in deciding the stability of the hypercloso structure. The interaction between the borane and the metal fragments in the hypercloso geometry is analyzed using the fragment molecular orbital approach. The interconversion of the closo and hypercloso structures by the addition and removal of the electrons is also discussed in terms of the correlation diagrams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrlne is a well known llgand for lanthanldes (i). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrlne is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the quadratic nonlinearity of one- and two-electron oxidation products of the first series of transition metal complexes of meso-tetraphenylporphyrin (TPP). Among many MTPP complexes, only CuTPP and ZnTPP show reversible oxidation/reduction cycles as seen from cyclic voltammetry experiments. While centrosymmetric neutral metalloporphyrins have zero first hyperpolarizability, β, as expected, the cation radicals and dications of CuTPP and ZnTPP have very high β values. The one- and two-electron oxidation of the MTPPs leads to symmetry-breaking of the metal−porphyrin core, resulting in a large β value that is perhaps aided in part by contributions from the two-photon resonance enhancement. The calculated static first hyperpolarizabilities, β0, which are evaluated in the framework of density functional theory by a coupled perturbed Hartree−Fock method, support the experimental trend. The switching of optical nonlinearity has been achieved between the neutral and the one-electron oxidation products but not between the one- and the two-electron oxidation products since dications that are electrochemically reversible are unstable due to the formation of stable isoporphyrins in the presence of nucleophiles such as halides.