205 resultados para 2299 Other Philosophy and Religious Studies
Resumo:
Hydroxyapatite(OHAp)-based ceramic composites with added ZrO2 have been prepared both by sintering at 1400 °C and by hot isostatic pressing (HIP) at 1450 °C and 140 MPa pressure (argon atmosphere). The development of the crystalline phases and the microstructure of the composites have been examined using X-ray diffraction, electron microscopy, infrared and magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopic techniques. The fracture toughness and biocompatibility of the composites have also been studied. The effect of the addition of CeO2- and Y2O3-stabilized ZrO2 and of simple monoclinic ZrO2 to the initial physical mixture, on the structure and properties of the resulting composites has been investigated. In most of the sintered or HIP samples, the OHAp decomposes into tricalcium phosphate (β-TCP). CaO, which forms as a product of decomposition, dissolves completely in ZrO2 and stabilizes the latter in its cubic/tetragonal phase. Presence of the β-TCP phase in the product seems to be the result of a structural synergistic effect of hexagonal OHAp. Two structurally distinct orthophosphate groups have been identified in the composites by MASNMR of 31P and attributed to decomposition products of OHAp at higher temperatures. The composites possess high KIC values (2–3 times higher than that of pure OHAp). Decomposition of hydroxyapatite gives rise to differences in microstructure between HIP and simply sintered composites although fracture toughness values are similar in magnitude indicating the presence of several toughening mechanisms. The in vitro SP2-O cell test suggests that these composites possess good biocompatibility. The combination of good biocompatibility, desirable microstructure and easy availability of initial reactants indicates that the simply sintered composite of OHAp and monoclinic ZrO2(ZAP-30) appears to be the most suitable for prosthetic applications.
Resumo:
A hydrothermal reaction of Mn(OAc)(2)center dot 4H(2)O, Co(OAc)(2)center dot 4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 degrees C for 24 h gives rise to a mixed metal MOF compound, CoMn2(C6H3(COO)(3))(2)], I. The structure is formed by the connectivity between octahedral CoO6 and trigonal prism MnO6 units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M2+ ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn2O4, with particle sizes in the nano regime at 400 degrees C. The particle size of the CoMn2O4 can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn2O4 compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.
Resumo:
Bulk, melt quenched Ge18Te82-xBix glasses (1 <= x <= 4) have been found to exhibit memory type electrical switching behavior, which is in agreement with the lower thermal diffusivity values of Ge-Te-Bi samples. A linear variation in switching voltages (V-th) has been found in these samples with increase in thickness which is consistent with the memory type electrical switching. Also, the switching voltages have been found to decrease with an increase in temperature which happens due to the decrease in the activation energy for crystallization at higher temperatures. Further. V-th of Ge18Te82-xBix glasses have been found to decrease with the increase in Bi content, indicating that in the Ge-Te-Bi system, the resistivity of the additive has a stronger role to play in the composition dependence of V-th, in comparison with the network connectivity and rigidity factors. In addition, the composition dependence of crystallization activation energy has been found to show a decrease with an increase in Bi content, which is consistent with the observed decrease in the switching voltages. X-ray diffraction studies on thermally crystallized samples reveal the presence of hexagonal Te, GeTe, Bi2Te3 phases, suggesting that bismuth is not taking part in network formation to a greater extent, as reflected in the variation of switching voltages with the addition of Bi. SEM studies on switched and un-switched regions of Ge-Te-Bi samples indicate that there are morphological changes in the switched region, which can be attributed to the formation of the crystalline channel between two electrodes during switching. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
Resumo:
Tri(amino)silanes were prepared by the condensation of trichlorosilane with secondary amines in 1:6 molar ratio. Reactions of trichlorosilane with pyrrolidine, piperidine, hexamethyleneimine, morpholine, N-methylpiperazine and diethylamine afford the tri(amino)silanes in nearly quantitative yields. Their physical and spectroscopic properties are discussed. All these compounds are highly sensitive to moisture and hydrolyse to silica and the respective amine with the evolution of hydrogen. The compounds have been characterised by IR, 1H NMR, [1H]29Si NMR spectroscopic methods and CHN elemental analysis.
Resumo:
Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one-step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm(-1) and the temperature dependent resistivity follows ln rho(T) similar to T-1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 120: 2856-2862, 2011
Resumo:
The unsymmetrical diphosphazanes X2PN(Pr(i))PYY'(1a-1h) {X = Ph, YY' = O2 C6H4 (1a) or YY' = O2C12H8 (1b); X = Ph, Y = Ph, Y' = OC6H4Me-4 (1c), OC6H4Br-4 (1d), OC6H3Me2-3,5 (1e), OC5H4N-2 (1f), N2C3HMe2-3,5 (1g) or Cl (1h)} react with [M(CO)4(NHC5H10)2] (M = Mo, W) to yield the cis-chelate complexes [M(CO)4{X2PN(Pr(i)) PYY'}] {M = Mo (2a-2h); M = W (3-f,3-g)}. These complexes have been characterized by H-1, P-31 and C-13 NMR and IR spectroscopic studies.
Resumo:
Photoluminescence and Raman scattering experiments have been carried out on single crystals of C70 up to 31 GPa to investigate the effect of pressure on the optical band gap, vibrational modes and stability of the molecule. The photoluminescence band shifts to lower energies and the pressure dependence of the band maxima yields the hydrostatic deformation potential to be 2.15 eV. The slope changes in the pressure dependence of peak positions and linewidths of the Raman modes associated with the intramolecular vibrations at 1 GPa mark the known face-centred cubic-->rhombohedral orientational ordering transition. The reversible amorphization in C70 at P > 20 GPa has been compared with the irreversible amorphization in C60 at P > 22 GPa in terms of carbon-carbon distance between the neighbouring molecules at the threshold transition pressures, in conjunction with the interplay between the intermolecular and intramolecular interactions.
Resumo:
CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
Films of (PEG)(x)NH4ClO4 (x = 5 to 1000) were prepared and characterized. The physical properties are observed to be a sensitive function of concentration. Hygroscopicity increases as salt content increases. Conductivity peaks (sigma = 2.7 x 10(-6) S/cm) at x = 46. The H-1 NMR line width has a minimum at x = 46, while that of Cl-35 monotonically increases with salt concentration, indicating that the complex is essentially a protonic conductor.
Resumo:
Amorphous carbon films are prepared by the pyrolysis of Tetra Chloro Phthalic Anhydride (TCPA) at different temperatures (700 degrees C to 900 degrees C). DC Conductivity measurements are done on the films in the temperature range 300K to 4.2K. It shows an activated temperature dependence with a small activation energy (0.02eV to 0.003eV). Variable range hopping is observed at low temperatures. The films are characterised by XRD, SEM, TEM, AFM and microRaman. The electronic structure of the film is used to explain the electrical behaviour.
Resumo:
The virus epizootics which occurred in seals in both Europe and Siberia during 1987/1988 were caused by two different morbillivirus, referred to as phocid distemper virus (PDV) 1 and 2, respectively. Molecular and serological studies have shown that the European virus is quite distinct from canine distemper virus (CDV), its closest relative in the morbillivirus group. Analysis of tissues obtained from infected seals from a wide geographical distrubution over Northern Europe showed that the infectious agent (PDV 1) was identical in all cases. Nucleotide sequence analysis of one of the virus genes suggested that this virus has evolved away from CDV over a long time period and is most probably an enzootic virus of marine mammals. In contrast, the virus (PDV 2) which caused the deaths of many Siberian seals was indistinguishable, both serologically and at the molecular level, from CDV and must have originated from a land source.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
We report here the results of structural and vibrational studies on the solid solution Fe1 ? xNixPS3 (1 greater-or-equal, slanted x greater-or-equal, slanted 0) systems. From the structural analysis, we show that there is a lattice compaction as the composition x is varied from 0 to 1, the basic lattice symmetry being maintained. We find that the compaction is more in the basal plane. These subtle structural changes are also reflected in the vibrational bands. We observed splitting of certain bands due to these small changes in the lattice constants, which we explained as arising from a correlation splitting. These changes in the vibrational bands have also been seen on cooling where there is a preferential thermal compaction in the basal plane compared to that perpendicular to the plane.