110 resultados para 13627-011


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instabilities arising in unsteady boundary layers with reverse flow have been investigated experimentally. Experiments are conducted in a piston driven unsteady water tunnel with a shallow angle diffuser placed in the test section. The ratio of temporal (Pi(t)) to spatial (Pi(x)) component of the pressure gradient can be varied by a controlled motion of the piston. In all the experiments, the piston velocity variation with time is trapezoidal consisting of three phases: constant acceleration from rest, constant velocity and constant deceleration to rest. The adverse pressure gradient (and reverse flow) are due to a combination of spatial deceleration of the free stream in the diffuser and temporal deceleration of the free stream caused by the piston deceleration. The instability is usually initiated with the formation of one or more vortices. The onset of reverse flow in the boundary layer, location and time of formation of the first vortex and the subsequent flow evolution are studied for various values of the ratio Pi(x) (Pi(x) + Pi(t)) for the bottom and the top walls. Instability is due to the inflectional velocity profiles of the unsteady boundary layer. The instability is localized and spreads to the other regions at later times. At higher Reynolds numbers growth rate of instability is higher and localized transition to turbulence is observed. Scalings have been proposed for initial vortex formation time and wavelength of the instability vortices. Initial vortex formation time scales with convective time, delta/Delta U, where S is the boundary layer thickness and Delta U is the difference of maximum and minimum velocities in the boundary layer. Non-dimensional vortex formation time based on convective time scale for the bottom and the top walls are found to be 23 and 30 respectively. Wavelength of instability vortices scales with the time averaged boundary layer thickness. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil shrinkage curve represents a decrease of total porosity or an increase of bulk density with water loss. However, our knowledge of the dynamics of pores and their geometry during soil shrinkage is scarce, partially due to lack of reliable methods for determining soil pores in relation to change in soil water. This study aimed to investigate the dynamics of macropores (>30 mu m) of paddy soils during shrinkage. Two, paddy soils, which were sampled from one paddy field cultivated for 20 years (YPF) and the other one for over 100 years (OPF), represented difference in crack geometry in the field. Macropore parameters (volume, connectivity, and orientation of pores) and soil shrinkage parameters were determined on the same undisturbed soil cores by X-ray microtomography and shrinkage curve, respectively. Macroporosity was on average four times larger in the YPF than in the OPF whereas the shrinkage capacity was lower in the YPF as compared to the OPF (0.09 vs. 0.15 COLE). Soil shrinkage increased the volume of pores by 3.7% in the YPF and by 1.6% in the OPF as well as their connectivity. The formation of macropores occurred mostly in the proportional shrinkage phase. As a result, the slope of the proportional shrinkage phase was smaller in the YPF (0.65) than in the OPF (0.89). New macropores were cracks and extended pre-existing pores in the range of 225-1215 pm size without any preferential orientation. This work provides image evidences that in paddy soils with high shrinkage capacity more macropores are generated in the soil presenting a smaller proportional shrinkage slope. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nursery pollination mutualism between figs and pollinating fig wasps is based on adaptations that allow wasps to enter the enclosed inflorescences of figs, to facilitate seed set, and to have offspring that develop within the nursery and that leave to enter other inflorescences for pollination. This closed mutualistic system is not immune to parasitic fig wasps. Although the life histories and basic biology of the mutualists have been investigated, the biology of the fig wasp parasites has been severely neglected. This review brings together current knowledge of the many different ways in which parasites can enter the system, and also points to the serious lacunae in our understanding of the intricate interactions between gallers, kleptoparasites, seed eaters and parasitoids within this mutualism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospray ionization mass spectrometry (ESI MS) under nanospray conditions has been used to examine the effects of mutation at two key dimer interface residues, Gln (Q) 64 and Thr (T) 75, in Plasmodium falciparum triosephosphate isomerase. Both residues participate in an intricate network of intra- and intersubunit hydrogen bonds. The gas phase distributions of dimeric and monomeric protein species have been examined for the wild type enzyme (TWT) and three mutants, Q64N, Q64E, and 175S, under a wide range of collision energies (40-160 eV). The results established the order of dimer stability as TWT > T75S > Q64E similar to Q64N. The mutational effects on dimer stability are in good agreement with the previously reported estimates, based on the concentration dependence of enzyme activity. Additional experiments in solution, using inhibition of activity by a synthetic dimer interface peptide, further support the broad agreement between gas phase and solution studies. (C) 2016 Elsevier Inc. All rights reserved.