123 resultados para 12.38.Lg
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Unconstrained gamma(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (alpha gamma)(n) sequences. The C-12 helical conformation for the decapeptide, Boc-Leu-gamma(4)(R)Val](5)-OMe, is established in crystals by X-ray diffraction. A regular C-12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-Leu-gamma(4)(AR)Val](9)-OMe, and a designed 16 residue (alpha gamma)(n) peptide, incorporating variable side chains. Unconstrained (alpha gamma)(n) peptides show an unexpectedly high propensity for helical folding in long polypeptide sequences.
Resumo:
A variety of pyrimidinyl benzoxazoles, benzothiazoles and benzimidazoles linked by thio, methylthio and amino moieties were prepared and studied their antimicrobial and cytotoxic activities. The compound pyrimidinyl bis methylthio benzimidazole 22 was a potent antimicrobial agent particularly against Staphylococcus aureus (29 mm, MIC 12.5 mu g/mL) and Penicillium chrysogenum (38 mm, MIC 12.5 mu g/mL). The amino linked pyrimidinyl bis benzothiazole 24 exhibited cytotoxic activity on A549 cells with IC50 value of 10.5 mu M. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper, a current error space vector (CESV) based hysteresis controller for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed, for the first time. An open-end winding configuration is used for the induction motor. The proposed controller uses parabolic boundary with generalized vector selection logic for all sectors. The drive scheme is first studied with a space vector based PWM (SVPWM) control and from this the current error space phasor boundary is obtained. This current error space phasor boundary is approximated with four parabolas and then the system is run with space phasor based hysteresis PWM controller by limiting the CESV within the parabolic boundary. The proposed controller has increased modulation range, absence of 5th and 7th order harmonics for the entire modulation range, nearly constant switching frequency, fast dynamic response with smooth transition to the over modulation region and a simple controller implementation.
Resumo:
12 V / kilo-Farad (kF) range substrate-integrated lead-carbon hybrid ultracapacitors (HUCs) wherein the conventional positive plates of lead-acid batteries are replaced with substrate-integrated PbO2 positive plates and the negative plates are replaced with carbon-coated graphitic electrodes, providing totally non-faradaic and corrosion-free electrodes, are developed and performance tested. Constant-current discharge data at varying load-currents, constant-power discharge data at varying power values, and the capacitance data at different temperature for a 12 V / kF range substrate-integrated lead-carbon HUC are described along with its resistance, leakage current, self-discharge and cycle-life characteristics.
Resumo:
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.
Resumo:
A lithium-ion hybrid capacitor comprising of a battery type multi-component olivine (LiMn1/3Co1/3Ni1/3PO4) cathode and a capacitive type carbon negative electrode is reported. Olivine phosphate synthesized with chelating agent's polyvinylpyrrolidone (PVP) or triethanolamine (TEA) showed uniform carbon coating through in-situ process exhibiting a surface area 5.1 m(2)/g with porosity 0.02 cm(3)/g. The surface area for commercial carbon electrode was observed to be 1450 m(2)/g with high porosity 0.76 cm(3)/g. Galvanostatic charge/discharge cycling tests were conducted in the coin cells, olivine vs. Li, offering a cell voltage of 4.75 V vs. Li with a maximum specific capacitance of 125 F/g. In the case of olivine vs. carbon in a lithium-ion hybrid device delivered a high discharge capacitance of 86 F/g at a specific current of 0.12 A/g with a cycling retention of 53 F/g (38% loss) after 250 cycles. The obtained performance of PVP synthesized olivine material is manifested to uniform carbon coating and the trapped organic products that provide pathways for facile electrochemical reactions than their TEA counterparts.
Resumo:
Three new molecular compounds, Ni-5(bta)(6)(CO)(4)], I, Ni-9(bta)(12)(CO)(6)], II, Ni-9(bta)(12)(CO)(6)]. 2(C3H7NO), III, (bta = benzotriazole) were prepared employing solvothermal reactions. Of these, I have pentanuclear nickel, whereas II and III have nonanuclear nickel species. The structures are formed by the connectivity between the nickel and benzotriazole giving rise to the 5- and 9-membered nickel clusters. The structures are stabilised by extensive pi aEuro broken vertical bar pi and C-H... pi interactions. Compound II and III are solvotamorphs as they have the same 9-membered nickel clusters and have different solvent molecules. To the best of our knowledge, the compounds I-III represent the first examples of the same transition element existing in two distinct coordination environment in this class of compounds. The studies reveal that compound I is reactive and could be an intermediate in the preparation of II and III. Thermal studies indicate that the compounds are stable upto 350(a similar to)C and at higher temperatures (similar to 800(a similar to)C) the compounds decompose into NiO. Magnetic studies reveal that II is anti-ferromagnetic.
Resumo:
Lead-carbon hybrid ultracapacitors comprise positive lead dioxide plates of the lead-acid battery and negative plates of carbon-based electrical double-layer capacitors (EDLCs). Accordingly, a lead-carbon hybrid ultracapacitor has the features of both the battery and that of an EDLC. In this study, the development and performance comparison between the two types of lead-carbon hybrid ultracapacitors, namely those with substrate-integrated and conventional pasted positive plates, is presented as such a study is lacking in the literature. The study suggests that the faradaic efficiencies for both types of lead-carbon hybrid ultracapacitors are comparable. However, their capacitance values as well as energy and power densities differ significantly. For substrate-integrated positive plate hybrid ultracapacitor, capacitance and energy density values are lower, but power density values are higher than pasted positive plate lead-carbon hybrid ultracapacitors due to their shorter response time. Accordingly, internal resistance values are also lower for substrate-integrated lead-carbon hybrid ultracapacitors. Both types of lead-carbon hybrid ultracapacitors exhibit good cycle life of 100,000 pulse charge-discharge cycles with only a nominal loss in their capacitance values.
Resumo:
Secondary structure formation in oligopeptides can be induced by short nucleating segments with a high propensity to form hydrogen bonded turn conformations. Type I/III turns facilitate helical folding while type II'/I' turns favour hairpin formation. This principle is experimentally verified by studies of two designed dodecapeptides, Boc-Val-Phe-Leu-Phe-Val-Aib-Aib-Val-Phe-Leu-Phe-Val-OMe 1 and Boc-Val-Phe-Leu-Phe-Val- (D) Pro- (L) Pro-Val-Phe-Leu-Phe-Val-OMe 2. The N- and C-terminal flanking pentapeptide sequences in both cases are identical. Peptide 1 adopts a largely alpha-helical conformation in crystals, with a small 3(10) helical segment at the N-terminus. The overall helical fold is maintained in methanol solution as evidenced by NMR studies. Peptide 2 adopts an antiparallel beta-hairpin conformation stabilized by 6 interstrand hydrogen bonds. Key nuclear Overhauser effects (NOEs) provide evidence for the antiparallel beta-hairpin structure. Aromatic proton chemical shifts provide a clear distinction between the conformation of peptides 1 (helical) and 2 (beta-hairpin). The proximity of facing aromatic residues positioned at non-hydrogen bonding positions in the hairpin results in extensively ring current shifted proton resonances in peptide 2.
Resumo:
Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of similar to 200 F and similar to 300 F, energy densities of similar to 1.9 Wh kg(-1) and similar to 2.5 Wh kg(-1) and power densities of similar to 2 kW kg(-1) and similar to 0.8 kW kg(-1), respectively, having faradaic-efficiency values of similar to 90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about similar to 4 US$/Wh as compared to similar to 20 US$/Wh for commercially available ultracapacitors.
Resumo:
Multilevel inverters with hexagonal voltage space vector structures have improved performance of induction motor drives compared to that of the two level inverters. Further reduction in the torque ripple on the motor shaft is possible by using multilevel dodecagonal (12-sided polygon) voltage space vector structures. The advantages of dodecagonal voltage space vector based PWM techniques are the complete elimination of fifth and seventh harmonics in phase voltages for the full modulation range and the extension of linear modulation range. This paper proposes an inverter circuit topology capable of generating multilevel dodecagonal voltage space vectors with symmetric triangles, by cascading two asymmetric three level inverters with isolated H-Bridges. This is made possible by proper selection of DC link voltages and the selection of resultant switching states for the inverters. In this paper, a simple PWM timing calculation method is proposed. Experimental results have also been presented in this paper to validate the proposed concept.
Resumo:
To evaluate the interlaboratory mass bias for high-precision stable Mg isotopic analysis of natural materials, a suite of silicate standards ranging in composition from felsic to ultramafic were analyzed in five laboratories by using three types of multicollector inductively coupled plasma mass spectrometer (MC-ICPMS). Magnesium isotopic compositions from all labs are in agreement for most rocks within quoted uncertainties but are significantly (up to 0.3 parts per thousand in Mg-26/Mg-24, > 4 times of uncertainties) different for some mafic samples. The interlaboratory mass bias does not correlate with matrix element/Mg ratios, and the mechanism for producing it is uncertain but very likely arises from column chemistry. Our results suggest that standards with different matrices are needed to calibrate the efficiency of column chemistry and caution should be taken when dealing with samples with complicated matrices. Well-calibrated standards with matrix elements matching samples should be used to reduce the interlaboratory mass bias.