231 resultados para transient thermal distortion analysis
Resumo:
Hydrazinium magnesium sulfate, (N2H5)2Mg(SO4)2, has been prepared by dissolving magnesium powder in a solution of ammonium sulfate in hydrazine hydrate, by the reaction of ammonium magnesium sulfate with hydrazine hydrate, and by the cocrystallisation of dihydrazinium sulfate and magnesium sulfate. The product has been characterized by chemical analysis and infrared spectra. Thermal analysis of (N2H5)2Mg(SO4)2 by TG and DTA show exothermic decomposition at 302°C giving Mg(N2H4)SO4 as an intermediate and an endother-mic decomposition at 504°C producing MgSO4.
Resumo:
Special switching sequences can be employed in space-vector-based generation of pulsewidth-modulated (PWM) waveforms for voltage-source inverters. These sequences involve switching a phase twice, switching the second phase once, and clamping the third phase in a subcycle. Advanced bus-clamping PWM (ABCPWM) techniques have been proposed recently that employ such switching sequences. This letter studies the spectral properties of the waveforms produced by these PWM techniques. Further, analytical closed-form expressions are derived for the total rms harmonic distortion due to these techniques. It is shown that the ABCPWM techniques lead to lower distortion than conventional space vector PWM and discontinuous PWM at higher modulation indexes. The findings are validated on a 2.2-kW constant $V/f$ induction motor drive and also on a 100-kW motor drive.
Resumo:
Lead zir conyl oxalate hexahydrate (LZO) and lead titanyl zirconyl oxalate hydrate (LTZO) are prepared and characterized. Their thermal decompositions have been investigated by thermoanalytical and gas analysis techniques. The decomposition in air or oxygen has three steps — dehydration, decomposition of the oxalate to a carbonate and the decomposition of carbonate to PbZrO3. In non oxidising atmosphere, partial reduction of Pb(II) to Pb(0) takes place at the oxalate decomposition step. The formation of free metallic lead affects the stoichiometry of the intermediate carbonate and yields a mixture of Pb(Ti,Zr)O3 and ZrO2 as the final products. By maintaining oxidising atmosphere and low heating rate, direct preparation of stoichiometric, crystalline Pb(Ti,Zr)O3 at 550°C is possible from the corresponding oxalate precursor.
Resumo:
This paper deals with an approximate method of analysis of non-linear, non-conservative systems of two degrees of freedom. The approximate equations for amplitude and phase are obtained by a generalized averaging technique based on the ultraspherical polynomial approximation. The method is illustrated by an example of a spring-mass-damper system.
Resumo:
The thermal decomposition of ammonium perchlorate based solid composite propellant using carboxyl terminated polybutadiene as binder has been studied employing thermogravimetry and differential thermal analysis techniques. The thermal decomposition characteristics of the propellant have been found to be quite similar to those of pure ammonium perchlorate with activation energy, 32 Kcal/mole and 60 Kcal/mole respectively in the low and high temperature regions. The effect of the sample size and shape on the thermal decomposition has also been evaluated.
Resumo:
In this paper the response of a gyrostabilized platform subjected to a transient torque has been analyzed by deliberately introducing non-linearity into the command of the servomotor. The resulting third-order non-linear differential equation has been solved by using a transformation technique involving the displacement variable. The condition under which platform oscillations may grow with time or die with time are important from the point of view of platform stabilization. The effect of deliberate addition of non-linearity with a view to achieving the ideal response—that is, to bring the platform back to its equilibrium position with as few oscillations as possible—has been investigated. The conditions under which instability may set in on account of the small transient input and small non-linearity has also been discussed. The analysis is illustrated by means of a numerical example. The results of analysis are compared with numerical solutions obtained on a digital computer.
Resumo:
Mössbauer-effect and X-ray studies were carried out on the product samples of the thermogravimetric analysis (TGA) and of the isothermal decomposition of iron(II) oxalate in flowing H2. Two types of sample configurations were employed for isothermal studies between 280 to 420°C for various periods of heating. Low temperature Mossbauer measurements at liquid nitrogen temperature were carried out to examine the superparamagnetic (SPM) contributions. From the spectra of samples decomposed at 340°C, in vertical experiments, the percentage SPM and percentage ferromagnetic (FM) area of Fe3O4 were estimated and an average size (˜167Å) for Fe3O4 was derived. Mossbauer measurements (at high temperatures) were carried out on Fe3C formed in horizontal experiments, for two samples decomposed at ˜320°C for 1 hr and 2 hr. An estimate of SPM and FM Fe3C was obtained by calculating KV, the anisotropy energy for the Fe3C in these two samples and values of 5.07 × 10−16 and 7.02 × 10−16 erg/sec, respectively, were obtained.
Resumo:
The thermal decomposition of methylammonium perchlorate (MAP) has been studied under isothermal and non-isothermal conditions. Differential thermal analysis of MAP showed, in addition to the exotherm due to decomposition, another exotherm at 408° which was observed for the first time. Chemical analysis and the infrared spectrum of the residue left behind after the decomposition proved it to contain NH4ClO4. The results have been explained on the basis of a methyl group transfer in addition to proton transfer in the decomposition process.
Resumo:
The thermal decomposition of hydrazinium monoperchlorate (HP-1) in the molten state has been investigated using differential thermal analysis, thermogravimetric analysis, a constant volume manometric technique and mass-spectrometry. The stoichiometry of the reaction can be represented by the equation: 20 N2H5C1O4 13 NH4C1O4 + 3.5 Cl2 + 2 O2 + 13 N2 + 0.5 N2O + 0.5 H2 + + 23.5 H2O The data seem to indicate that the mechanism, which involves an associated complex, remains unchanged from 140 to 190°. Consequently, impurities capable of forming associated complexes with the hydrazinium or the perchlorate ion desensitize the thermal decomposition of HP-1, the extent of desensitization being determined by the size, the charge and the concentration of the impurity.
Resumo:
Poly(styrene peroxide) has been prepared and characterized. Nuclear magnetlc resonance (NMR) spectra Of the polymer show the shift Of aliphatic protons. Differential scanning calorimetric (DSC) and differential thermal analysis (DTA) results show anexothermic peak around 110 OC which is characteristic of peroxide decomposition.
Resumo:
STUDIES on potassium perchlorate/polystyrene (KP/PS) propellant systems have been carried out by using such techniques as thermogravimetry (TG), differential thermal analysis (DTA), and mass spectrometry (MS). It has been found that the thermal decomposition (TD) behavior of the KP/PS propellant is similar to that of the AP/PS propellant studied earlier.! It has also been observed that the TD of KP in the melt has a correlation with the burning rate (r) of KP/PS propellant at atmospheric pressure.
Resumo:
Zinc film containing hexagonal plate stack and tower-like micro structures were grown on Si substrates at high temperature by thermal evaporation. Thermal oxidation studies on these micro structures have shown that ZnO nanoneedles selectively grow from the facets of the zinc microstructure at temperature above 300 degrees C in atmosphere TEM analysis showed that single crystalline and bicrystalline nanoneedles were formed in this oxidation process and the growth direction of these nanoneedles was identified along the [1 1 (2) overbar 0]. Based on the structural studies and morphological observation, we have proposed a possible mechanism for the selective growth of ZnO nanoneedles during thermal oxidation.
Resumo:
The interaction of transient electromagnetic field due to an NEMP with buried cables has been studied in this paper. The cables studied were of two types: shielded as well as unshielded cables. Using transmission line analysis, the induced voltage and current are computed at the load end of the cable for different soil conductivities, different depths of burial of cable and for different lengths of the cable. Effect of shielding on the induced voltage on the cable inner conductor as well as the dependence of the induced voltage on the shield thickness are also studied.
Resumo:
Structural, microstructural, and dielectric studies have been carried out on Pr-modified PbTiO3. A comparative analysis with La-modified PbTiO3 suggests that for chemical modification by same amount, the Pr-modified system has larger tetragonal strain and Curie point. No clear feature of relaxor ferroelectric state is observed for Pr concentration as high as x=0.35, suggesting that Pr modification is less effective, as compared to La-modification, in inducing a relaxor ferroelectric state. Results suggest that inspite of increased chemical disorder, Pr modification partly tends to restore the ferroelectric distortion of the lattice through partial occupancy of the Pr4+ ions on the Ti4+ sites.
Resumo:
Peanut agglutinin is a homotetrameric nonglycosylated protein. The protein has a unique open quaternary structure. Molecular dynamics simulations have been employed follow the atomistic details of its unfolding at different temperatures. The early events of the deoligomerization of the protein have been elucidated in the present study. Simulation trajectories of the monomer as well as those of the tetramer have been compared and the tetramer is found to be substantially more stable than its monomeric counterpart. The tetramer shows retention of most of its.. secondary structure but considerable loss of the tertiary structure at high temperature. e generation of a This observation impies the molten globule-like intermediate in the later stages of deoligomerization. The quaternary structure of the protein has weakened to a large extent, but none of the subunits are separated. In addition, the importance of the metal-binding to the stability of the protein structure has also been investigated. Binding of the metal ions not only enhances the local stability of the metal-ion binding loop, but also imparts a global stability to the overall structure. The dynamics of different interfaces vary significantly as probed through interface clusters. The differences are substantially enhanced at higher temperatures. The dynamics and the stability of the interfaces have been captured mainly by cluster analysis, which has provided detailed information on the thermal deoligomerization of the protein.