107 resultados para stator-rotor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A current-error space phasor based hysteresis controller with nearly constant switching frequency is proposed for a general n-level voltage source inverter fed three-phase induction motor drive. Like voltage-controlled space vector PWM (SVPWM), the proposed controller can precisely detect sub-sector changes and for switching it selects only the nearest switching voltage vectors using the information of the estimated fundamental stator voltages along α and β axes. It provides smooth transition between voltage levels, including operation in over modulation region. Due to adjacent switching amongst the nearest switching vectors forming a triangular sub-sector, in which tip of the fundamental stator voltage vector of the machine lies, switching loss is reduced while keeping the current-error space phasor within the varying parabolic boundary. Appropriate dimension and orientation of this parabolic boundary ensures similar switching frequency spectrum like constant switching frequency SVPWM-based induction motor (IM) drive. Inherent advantages of multi-level inverter and space phasor based current hysteresis controller are retained. The proposed controller is simulated as well as implemented on a 5-level inverter fed 7.5 kW open-end winding IM drive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A current-error space-vector-based hysteresis current controller for a general n-level voltage-source inverter (VSI)-fed three-phase induction motor (IM) drive is proposed here, with control of the switching frequency variation for the full linear modulation range. The proposed current controller monitors the space-vector-based current error of an n-level VSI-fed IM to keep the current error within a parabolic boundary, using the information of the current triangular sector in which the tip of the reference vector lies. Information of the reference voltage vector is estimated using the measured current-error space vectors, along the alpha- and beta-axes. Appropriate dimension and orientation of this parabolic boundary ensure a switching frequency spectrum similar to that of a constant-switching-frequency voltage-controlled space vector pulsewidth modulation (PWM) (SVPWM)-based IM drive. Like SVPWM for multilevel inverters, the proposed controller selects inverter switching vectors, forming a triangular sector in which the tip of the reference vector stays, for the hysteresis PWM control. The sector in the n-level inverter space vector diagram, in which the tip of the fundamental stator voltage stays, is precisely detected, using the sampled reference space vector estimated from the instantaneous current-error space vectors. The proposed controller retains all the advantages of a conventional hysteresis controller such as fast current control, with smooth transition to the overmodulation region. The proposed controller is implemented on a five-level VSI-fed 7.5-kW IM drive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power converters burn-in test consumes large amount of energy, which increases the cost of testing, and certification, in medium and high power application. A simple test configuration to test a PWM rectifier induction motor drive, using a Doubly Fed Induction Machine (DFIM) to circulate power back to the grid for burn-in test is presented. The test configuration makes use of only one power electronic converter, which is the converter to be tested. The test method ensures soft synchronization of DFIM and Squirrel Cage Induction Machine (SCIM). A simple volt per hertz control of the drive is sufficient for conducting the test. To synchronize the DFIM with SCIM, the rotor terminal voltage of DFIM is measured and used as an indication of speed mismatch between DFIM and SCIM. The synchronization is done when the DFIM rotor voltage is at its minimum. Analysis of the DFIM characteristics confirms that such a test can be effectively performed with smooth start up and loading of the test setup. After synchronization is obtained, the speed command to SCIM is changed in order to load the setup in motoring or regenerative mode of operation. The experimental results are presented that validates the proposed test method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a current error space vector (CESV)-based hysteresis current controller for a multilevel 12-sided voltage space vector-based inverter-fed induction motor (IM) drive is proposed. The proposed controller gives a nearly constant switching frequency operation throughout different speeds in the linear modulation region. It achieves the elimination of 6n +/- 1, n = odd harmonics from the phase voltages and currents in the entire modulation range, with an increase in the linear modulation range. It also exhibits fast dynamic behavior under different transient conditions and has a simple controller implementation. Nearly constant switching frequency is obtained by matching the steady-state CESV boundaries of the proposed controller with that of a constant switching frequency SVPWM-based drive. In the proposed controller, the CESV reference boundaries are computed online, using the switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages. Vector change is decided by projecting the actual current error along the computed hysteresis space vector boundary of the presently applied vector. The estimated reference phase voltages are found from the stator current error ripple and the parameters of the IM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber reinforced laminated composite open-section beams are widely used as bearingless rotor flex beams because of their high specific strength and stiffness as well as fatigue life. These laminated composite structures exhibit a number of different failure modes, including fiber-matrix debonding within individual layers, delamination or separation of the layers, transverse cracks through one or more layers and fiber fracture. Delamination is a predominant failure mode in continuous fiber reinforced laminated composites and often initiate near the free edges of the structure. The appearance of delaminations in the composite rotorcraft flexbeams can lead to deterioration of the mechanical properties and, in turn, the helicopter performance as well as safety. Understanding and predicting the influence of free-edge delamination on the overall behavior of the laminates will provide quantitative measures of the extent of the damage and help ensure their damage tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage source inverter (VSI)-fed six-phase induction motor (IM) drives have high 6n +/- 1, n = odd-order harmonic currents. This is because these currents, driven by the corresponding harmonic voltages in the inverter output, are limited only by the stator leakage impedance, as these harmonics are absent in the back electromotive force of the motor. To suppress the harmonic currents, either bulky inductive harmonic filters or complex pulsewidth modulation (PWM) techniques have to be used. This paper proposes a harmonic elimination scheme using switched capacitor filters for a VSI-fed split-phase IM drive. Two 3-phase inverters fed from capacitors are used on the open-end side of the motor to suppress 6n +/- 1, n = odd-order harmonics. A PWM scheme that can suppress the harmonics as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected, and the fundamental power is always drawn from the main inverters. The proposed scheme is verified with a detailed experimental study. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed steady and unsteady experimental measurements and analysis were performed on a Single stage Transonic Axial Compressor with asymmetric rotor tip clearance for studying the compressor stall phenomena. The installed compressor had asymmetric tip clearance around the rotor casing varying from about 0.65mm to 1.25mm. A calibrated 5-hole aerodynamic probe was traversed radially at exit of rotor and showed the characteristics of increased flow angle at lower mass flow rates for all the speeds. Mach number distribution and boundary layer effects were also clearly captured. Unsteady measurements for velocity were carried out to study the stall cell behavior using a single component calibrated hotwire probe oriented in axial and tangential directions for choke/free flow and near stall conditions. The hotwire probe was traversed radially across the annulus at inlet to the compressor and showed that the velocity fluctuations were dissimilar when probe was aligned axial and tangential to the flow. Averaged velocities across the annulus showed the reduction in velocity as stall was approached. Axial mean flow velocity decreased across the annulus for all the speeds investigated. Tangential velocity at free flow condition was higher at the tip region due to larger radius. At stall condition, the tangential velocity showed decreased velocities at the tip and slightly increased velocities at the hub section indicating that the flow has breakdown at the tip region of the blade and fluid is accelerated below the blockage zone. The averaged turbulent intensity in axial and tangential flow directions increased from free flow to stall condition for all compressor rated speeds. Fast Fourier Transform (FFT) of the raw signals at stall flow condition showed stall cell and its corresponding frequency of occurrence. The stalling frequency of about half of rotational speed of the rotor along with large tip clearance suggests that modal type stall inception was occurring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations were performed of experiments from a cascade of stator blades at three low Reynolds numbers representative of flight conditions. Solutions were assessed by comparing blade surface pressures, velocity and turbulence intensity along blade normals at several stations along the suction surface and in the wake. At Re = 210,000 and 380,000 the laminar boundary layer over the suction surface separates and reattaches with significant turbulence fluctuations. A new 3-equation transition model, the k-k(L)-omega model, was used to simulate this flow. Predicted locations of the separation bubble, and profiles of velocity and turbulence fluctuations on blade-normal lines at various stations along the blade were found to be quite close to measurements. Suction surface pressure distributions were not as close at the lower Re. The solution with the standard k-omega SST model showed significant differences in all quantities. At Re = 640,000 transition occurs earlier and it is a turbulent boundary layer that separates near the trailing edge. The solution with the Reynolds stress model was found to be quite close to the experiment in the separated region also, unlike the k-omega SST solution. Three-dimensional computations were performed at Re = 380,000 and 640,000. In both cases there were no significant differences between the midspan solution from 3D computations and the 2D solutions. However, the 3D solutions exhibited flow features observed in the experiments the nearly 2D structure of the flow over most of the span at 380,000 and the spanwise growth of corner vortices from the endwall at 640,000.