97 resultados para sodium perborate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation response of the (001) face of sodium saccharin dihydrate is examined. The structure can be demarcated into regular and irregular regions or domains. The regular domains have solid-like and the irregular ones have liquid-like characteristics. Therefore, these domains impart a microstructure to the crystal. The indent face (001) is prominently developed in this crystal and unambiguously presents the regular and irregular regions to nanoindention. Average values of elastic modulus and hardness show a distinct bimodal mechanical response. Such a response has been observed in the case of intergrown polymorphs of aspirin and felodipine. We examine two possible reasons as to why the responses could be for bimodal in this crystal. The first possibility could be that the two domains correspond to regions of the original dihydrate and a lower hydrate that is obtained by the loss of some water. The second possibility could be that these responses correspond to regular and irregular regions in the structure. Nanoindentation is a very useful technique in the characterization of molecular solids, as a complementary technique to X-ray crystallography, because it samples different length scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium-ion batteries have been extensively pursued as economic alternatives to lithium-ion batteries. Investigating the polyanion chemistry, alluaudite structured Na2Fe2II(SO4)(3) has been recently discovered as a 3.8 V positive electrode material (Barpanda et al., Nature Commun., 5: 4358, 2014). Registering the highest ever Fe-III/Fe-II redox potential (vs. Na/Na+) and formidable energy density, it has opened up a new polyanion family for sodium batteries. Exploring the alluaudite family, here we report isotypical Na2+2xMn2-xII(SO4)(3) (x = 0.22) as a novel high-voltage cathode material for the first time. Following low-temperature (ca. 350 degrees C) solid-state synthesis, the structure of this new alluaudite compound has been solved adopting a monoclinic framework (s.g. C2/c) showing antiferromagnetic ordering at 3.4 K. Synergising experimental and ab initio DFT investigation, Na2+2xMn2-xII(SO4)(3) has been found to be a potential high-voltage (ca. 4.4 V) cathode material for sodium batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable batteries have been the torchbearer electrochemical energy storage devices empowering small-scale electronic gadgets to large-scale grid storage. Complementing the lithium-ion technology, sodium-ion batteries have emerged as viable economic alternatives in applications unrestricted by volume/weight. What is the best performance limit for new-age Na-ion batteries? This mission has unravelled suites of oxides and polyanionic positive insertion (cathode) compounds in the quest to realize high energy density. Economically and ecologically, iron-based cathodes are ideal for mass-scale dissemination of sodium batteries. This Perspective captures the progress of Fe-containing earth-abundant sodium battery cathodes with two best examples: (i) an oxide system delivering the highest capacity (similar to 200 mA h/g) and (ii) a polyanionic system showing the highest redox potential (3.8 V). Both develop very high energy density with commercial promise for large-scale applications. Here, the structural and electrochemical properties of these two cathodes are compared and contrasted to describe two alternate strategies to achieve the same goal, i.e., improved energy density in Fe-based sodium battery cathodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium-ion-based batteries have evolved as excellent alternatives to their lithium-ion-based counterparts due to the abundance, uniform geographical distribution and low price of Na resources. In the pursuit of sodium chemistry, recently the alluaudite framework Na2M2(SO4)(3) has been unveiled as a high-voltage sodium insertion system. In this context, the framework of density functional theory has been applied to systematically investigate the crystal structure evolution, density of states and charge transfer with sodium ions insertion, and the corresponding average redox potential, for Na2M2(SO4)(3) (M = Fe, Mn, Co and Ni). It is shown that full removal of sodium atoms from the Fe-based device is not a favorable process due to the 8% volume shrinkage. The imaginary frequencies obtained in the phonon dispersion also reflect this instability and the possible phase transition. This high volume change has not been observed in the cases of the Co- and Ni-based compounds. This is because the redox reaction assumes a different mechanism for each of the compounds investigated. For the polyanion with Fe, the removal of sodium ions induces a charge reorganization at the Fe centers. For the Mn case, the redox process induces a charge reorganization of the Mn centers with a small participation of the oxygen atoms. The Co and Ni compounds present a distinct trend with the redox reaction occurring with a strong participation of the oxygen sublattice, resulting in a very small volume change upon desodiation. Moreover, the average deintercalation potential for each of the compounds has been computed. The implications of our findings have been discussed both from the scientific perspective and in terms of technological aspects.