164 resultados para silane coupling agent
Resumo:
Presented is a thermodynamic feasibility analysis of extracting base metal chlorides fiom low-grade,multimetallic oxide ores using CaClz as a chlorinating agent in the presence of SOz undoz. The oxides react to form corresponding chlorides, while CaClz is converted to CaS04. The Ellingham diagram is usedfor comparing the standard Gibbs' fiee energy chanlpef or the su(fation-chlorinationr eaction of a large number of oxides. Except for alumina, silica and chromia, most of the other metal oxides will be converted to their respective chlorides. The volatile chlorides can be condensed, and the chlorides present in the condensed state can be leached. A process is proposed that uses a nontoxic chlorinating agent and gives an eficient sepurutiort cftlte metallic vuluesfr.om the garlgue.
Resumo:
We show that a fluid under strong spatially periodic confinement displays a glass transition within mode-coupling theory at a much lower density than the corresponding bulk system. We use fluctuating hydrodynamics, with confinement imposed through a periodic potential whose wavelength plays an important role in our treatment. To make the calculation tractable we implement a detailed calculation in one dimension. Although we do not expect simple 1d fluids to show a glass transition, our results are indicative of the behavior expected in higher dimensions. In a certain region of parameter space we observe a three-step relaxation reported recently in computer simulations [S. H. Krishnan, Ph.D. thesis, Indian Institute of Science (2005); Kim et al., Eur. Phys. J. Special Topics 189, 135 (2010)] and a glass-glass transition. We compare our results to those of Krakoviack [Phys. Rev. E 75, 031503 (2007)] and Lang et al. [Phys. Rev. Lett. 105, 125701 (2010)].
Resumo:
The nanochemistry of calcium remains unexplored, which is largely due to the inaccessibility of calcium nanoparticles in an easy to handle form by conventional methods of synthesis as well as its highly reactive and pyrophoric nature. The synthesis of colloidal Ca nanoparticles by the solvated metal atom dispersion (SMAD) method is described. The as-prepared Ca-THF nanoparticles, which are polydisperse, undergo digestive ripening in the presence of a capping agent, hexadecyl amine (HDA) to afford highly monodisperse colloids consisting of 2-3 nm sized Ca-HDA nanoparticles. These are quite stable towards precipitation for long periods of time, thereby providing access to the study of the nanochemistry of Ca. Particles synthesized in this manner were characterized by UV-visible spectroscopy, high resolution electron microscopy, and powder X-ray diffraction methods. Under an electron beam, two adjacent Ca nanoparticles undergo coalescence to form a larger particle.
Resumo:
A solvent-free synthesis of alpha-aminonitriles and beta-nitroamines by oxidative cross-dehydrogenative coupling under aerobic condition is reported. A catalytic amount of molybdenum(VI) acetylacetonoate was found to catalyze cyanation of tertiary amines to form alpha-aminonitriles, whereas vanadium pentoxide was found to promote aza-Henry reaction to furnish beta-nitroamines. Both of these environmentally benign reactions are performed in the absence of solvents using molecular oxygen as an oxidant.
Resumo:
The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]
Resumo:
We revisit the process e(+)e(-) -> gamma Z at the ILC with transverse beam polarization in the presence of anomalous CP- violating gamma ZZ coupling lambda(1) and gamma gamma Z coupling lambda(2). We point out that if the final- state spins are resolved, then it becomes possible to fingerprint the anomalous coupling Re lambda(1). 90% confidence level limit on Re lambda(1) achievable at ILC with center- of- mass energy of 500 GeVor 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10(-2) when the helicity of Z is used and 10(-3) when the helicity of gamma is used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. The benefits of such polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss possible methods by which one can isolate events with a definite helicity for one of the final- state particles.
Resumo:
In this paper we present an information filtering agent called sharable instructable information filtering agent (SIIFA). It adopted the approach of sharable instructable agents. SIIFA provides comprehensible and flexible interaction to represent and filter the documents. The representation scheme in SIIFA is personalized. It, either fully or partly, can be shared among the users of the stream while not revealing their interests and can be easily edited. SIIFA is evaluated on the comp.ai.neural-nets Usent newsgroup documents and compared with the vector space method.
Resumo:
Molybdenum trioxide (MoO3) catalyzed efficient oxidative cross-dehydrogenative-coupling (CDC) method for C-H functionalization of N-aryl tetrahydroisoquinolines has been explored. This user-friendly method of synthesizing alpha-aminophosphonates employs 1.1 equiv of dialkyl-H-phosphonate under aerobic condition. Formation of new C-P bonds from unfunctionalized starting materials under environmentally benign conditions provides an excellent avenue for the synthesis of biologically active alpha-aminophosphonates. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In search for a new antioxidant and antimicrobial agent with improved potency, we synthesized a series of benzofuran based 1,3,5-substituted pyrazole analogues (5a-l) in five step reaction. Initially, o-alkyl derivative of salicyaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, on treatment with 1,8-diaza bicyclo5.4.0]undec-7-ene (DBU) in the presence of molecular sieves. Further, aldol condensation with vanillin, Claisen-Schmidt condensation reaction with hydrazine hydrate followed by coupling of substituted anilines afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, elemental analysis and further screened for their antioxidant and antimicrobial activities. Among the tested compounds 5d and 5f exhibited good antioxidant property with 50% inhibitory concentration higher than that of reference while compounds 5h and 5l exhibited good antimicrobial activity at concentration 1.0 and 0.5 mg/mL compared with standard, streptomycin and fluconazole respectively. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We compute a certain class of corrections to (specific) screening lengths in strongly coupled non-abelian plasmas using the AdS/CFT correspondence. In this holographic framework, these corrections arise from various higher curvature interactions modifying the leading Einstein gravity action. The changes in the screening lengths are perturbative in inverse powers of the `t Hooft coupling or of the number of colors, as can be made precise in the context where the dual gauge theory is superconformal. We also compare the results of these holographic calculations to lattice results for the analogous screening lengths in QCD. In particular, we apply these results within the program of making quantitative comparisons between the strongly coupled quark-gluon plasma and holographic descriptions of conformal field theory. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.
Resumo:
Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.
Resumo:
The study is the first report of the utilization of a crown ether as a new and versatile resolving agent for the diffusion edited separation of enantiomers, complex mixtures and constitutional isomers. As a consequence of different binding affinities of enantiomers of a chiral molecule and individual components of the complex mixtures with the crown ether, the molecules diffuse at different rates. The enhanced separation achieved due to matrix assisted diffusion permitted their separation in the diffusion dimension. The generality and wide utility of the new resolving agent and the methodology are demonstrated on diverse examples, such as an organic chiral molecule, constitutional isomers and complex mixture of molecules possessing different functional groups that possess nearly identical molecular weights.
Resumo:
We describe a hybrid synthetic protocol, the solvated metal atom dispersion (SMAD) method, for the synthesis and stabilization of monodisperse amorphous cobalt nanoparticles. By employing an optimized ratio of a weakly coordinating solvent and a capping agent monodisperse colloidal cobalt nanoparticles (2 +/- 0.5 nm) have been prepared by the SMAD method. However, the as-prepared samples were found to be oxidatively unstable which was elucidated by their magnetic studies. Oxidative stability in our case was achieved via a pyrolysis process that led to the decomposition of the organic solvent and the capping agent resulting in the formation of carbon encapsulated cobalt nanoparticles which was confirmed by Raman spectroscopy. Controlled annealing at different temperatures led to the phase transformation of metallic cobalt from the hcp to fcc phase. The magnetic behaviour varies with the phase and the particle size; especially, the coercivity of nanoparticles exhibited strong dependence on the phase transformation of cobalt. The high saturation magnetization close to that of the bulk value was achieved in the case of the annealed samples. In addition to detailed structural and morphological characterization, the results of thermal and magnetic studies are also presented.