147 resultados para side illumination fluorescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ring versus side-chain alkylation of toluene with methanol over alkali-exchanged zeolite-X of differing basicity has been investigated by in situ infrared spectroscopy and TPD measurements. Over the basic Cs-exchanged zeolite the product of alkylation is styrene/ethylbenzene while over the acidic Li-exchanged zeolite ring alkylation occurs to give mainly xylene as the product. FTIR and TPD investigations reveal that, the key difference in the two types of alkylation processes lies in the state of the adsorbed methanol present at higher temperatures in the zeolite. In basic zeolites, methanol decomposes to formaldehyde and formates. The former is the key ‘side-chain’ alkylating species that leads to the formation of styrene. In the acidic zeolites it is shown that methanol bound to the acid sites plays an active role in the ‘ring alkylation’ of toluene to xylene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast three-dimensional (3D) imaging requires parallel optical slicing of a specimen with an efficient detection scheme. The generation of multiple localized dot-like excitation structures solves the problem of simultaneous slicing multiple specimen layers, but an efficient detection scheme is necessary. Confocal theta detection (detection at 90 degrees to the optical axis) provides a suitable detection platform that is capable of cross-talk-free fluorescence detection from each nanodot (axial dimension approximate to 150 nm). Additionally, this technique has the unique feature of imaging a specimen at a large working distance with super-resolution capabilities. Polarization studies show distinct field structures for fixed and fluid samples, indicating a non-negligible field-dipole interaction. The realization of the proposed imaging technique will advance and diversify multiphoton fluorescence microscopy for numerous applications in nanobioimaging and optical engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short range side chain-backbone hydrogen bonded motifs involving Asn and Gln residues have been identified from a data set of 1370 protein crystal structures (resolution = 1.5 angstrom). Hydrogen bonds involving residues i - 5 to i + 5 have been considered. Out of 12,901 Asn residues, 3403 residues (26.4%) participate in such interactions, while out of 10,934 Gln residues, 1780 Gln residues (16.3%) are involved in these motifs. Hydrogen bonded ring sizes (Cn, where n is the number of atoms involved), directionality and internal torsion angles are used to classify motifs. The occurrence of the various motifs in the contexts of protein structure is illustrated. Distinct differences are established between the nature of motifs formed by Asn and Gln residues. For Asn, the most highly populated motifs are the C10 (COdi .NHi + 2), C13 (COdi .NHi + 3) and C17 (NdHi .COi - 4) structures. In contrast, Gln predominantly forms C16 (COei .NHi - 3), C12 (NeHi .COi - 2), C15 (NeHi .COi - 3) and C18 (NeHi .COi - 4) motifs, with only the C18motif being analogous to the Asn C17structure. Specific conformational types are established for the Asn containing motifs, which mimic backbone beta-turns and a-turns. Histidine residues are shown to serve as a mimic for Asn residues in side chain-backbone hydrogen bonded ring motifs. Illustrative examples from protein structures are considered. Proteins 2012; (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acoustical behavior of an elliptical chamber muffler having an end-inlet and side-outlet port is analyzed semi-analytically. A uniform piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of acoustic pressure field in the elliptical cavity in terms of angular and radial Mathieu functions, subjected to rigid wall condition, whereupon under the assumption of a point source, Green's function is obtained. On integrating this function over piston area of the side or end port and dividing it by piston area, one obtains the acoustic field, whence one can find the impedance matrix parameters characterizing the 2-port system. The acoustic performance of these configurations is evaluated in terms of transmission loss (TL). The analytical results thus obtained are compared with 3-D HA carried on a commercial software for certain muffler configurations. These show excellent agreement, thereby validating the 3-D semi-analytical piston driven model. The influence of the chamber length as well as the angular and axial location of the end and side ports on TL performance is also discussed, thus providing useful guidelines to the muffler designer. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorescence quenching studies of carboxamide namely (E)-N-(3-Chlorophenyl)-2-(3,4,5-trimethoxybenzylideneamino)-4,5,6,7 tetrahydrobenzob]thiophene-3-carboxamide ENCTTTC] by aniline and carbon tetrachloride in six different solvents namely toluene, cyclohexane, n-hexane, n-heptane, n-decane and n-pentane have been carried out at room temperature with a view to understand the quenching mechanisms. The Stern-Volmer (S-V) plots have been found to be nonlinear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the ground state complex formation and sphere of action static quenching models. Using these models various quenching rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R' and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R' and D with the values of the encounter distance R and the mutual coefficient D determined using the Edward's empirical relation and Stokes Einstein relation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, enhanced fluorescence from a silver film coated nanosphere templated grating is presented. Initially, numerical simulation was performed to determine the plasmon resonance wavelength by varying the thickness of the silver film on top of a monolayer of 400 nm nanospheres. The simulation results are verified experimentally and tested for enhancing fluorescence from fluorescein isothiocyanate whose excitation wavelength closely matches with the plasmon resonance wavelength of the substrate with 100 nm silver film over nanosphere. The 12 times enhancement in the intensity is attributed to the local field enhancement in addition to the excitation of surface plasmon polaritons along the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fabrication of silver nanotriangle array using angle resolved nanosphere lithography and utilizing the same for enhancing fluorescence. The well established nanosphere lithography is modified by changing the angle of deposition between the nanosphere mask and the beam of silver being deposited resulting in nanotriangles of varying surface area and density. The 470 nm plasmon resonance wavelength of the substrate was determined using minimum reflectivity method which closely matches with excitation wavelength of the fluorophore. Ten times enhancement in fluorescence emission intensity is obtained from fluorescein isothiocyanate coated on top of silver nanotriangle array separated by a spacer layer of poly vinyl alcohol as compared to glass. The enhanced fluorescence emission is attributed to the increase in local field enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 mu m. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210x is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4754604]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facile synthesis of two new dimesitylboryl appended BODIPYs is reported. The two dyads have similar fluorescent chromophores but differ in their molecular conformations. They exhibit dual fluorescence, intramolecular energy transfer between boryl and BODIPY chromophores and different fluorescence responses (emission enhancement and quenching) upon fluoride binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (approximate to 250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769058]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Super-resolution imaging techniques are of paramount interest for applications in bioimaging and fluorescence microscopy. Recent advances in bioimaging demand application-tailored point spread functions. Here, we present some approaches for generating application-tailored point spread functions along with fast imaging capabilities. Aperture engineering techniques provide interesting solutions for obtaining desired system point spread functions. Specially designed spatial filters—realized by optical mask—are outlined both in a single-lens and 4Pi configuration. Applications include depth imaging, multifocal imaging, and super-resolution imaging. Such an approach is suitable for fruitful integration with most existing state-of-art imaging microscopy modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acoustical behaviour of an elliptical chamber muffler having a side inlet and side outlet port is analyzed in this paper, wherein a uniform velocity piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of the acoustic pressure field in the elliptical cavity in terms of the angular and radial Mathieu func-tions, subjected to the rigid wall condition. Then, the Green's function due to the point source lo-cated on the side (curved) surface of the elliptical chamber is obtained. On integrating this function over the elliptical piston area on the curved surface of the elliptical chamber and subsequent divi-sion by the area of the elliptic piston, one obtains the acoustic pressure field due to the piston driven source which is equivalent to considering plane wave propagation in the side ports. Thus, one can obtain the acoustic pressure response functions, i.e., the impedance matrix (Z) parameters due to the sources (ports) located on the side surface, from which one may also obtain a progressive wave rep-resentation in terms of the scattering matrix (S). Finally, the acoustic performance of the muffler is evaluated in terms of the Transmission loss (TL) which is computed in terms of the scattering pa-rameters. The effect of the axial length of the muffler and the angular location of the ports on the TL characteristics is studied in detail. The acoustically long chambers show dominant axial plane wave propagation while the TL spectrum of short chambers indicates the dominance of the trans-versal modes. The 3-D analytical results are compared with the 3-D FEM simulations carried on a commercial software and are shown to be in an excellent agreement, thereby validating the analyti-cal procedure suggested in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America