120 resultados para sexualak eta ugaltze eskubideak
Resumo:
Equimolar combination of a series of binuclear half-sandwich p-cymene ruthenium(II) building units Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1a](OTf)(2), Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)( MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1b](OTf)(2) and Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1c](OTf)(2) separately with imidazole-based ditopic ligands (L-1-L-2) in methanol yielded a series of tetranuclear metallamacrocycles 2-7](OTf)(4), respectively L-1 = 1,4-bis(imidazole-1-yl)benzene; L-2 = 4,4'-bis(imidazole-1-yl)biphenyl; OTf- = O3SCF3-]. Similarly, the reaction of Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)2](OTf)(2) 1a](OTf)(2) with a triazine-based tritopic ligand 1,3,5-tris(imidazole-1-yl) triazine (L3) in 3: 2 M ratio afforded an unexpected tetranuclear macrocycle 8](OTf)(4) instead of an expected trigonal prismatic cage 8a](OTf)(6). All the self-assembled macrocycles 2-8](OTf)(4) were isolated in moderate to high yields and were fully characterized by multinuclear H-1, F-19] NMR, IR and electrospray ionization mass spectrometry (ESI-MS). In addition, X-ray diffraction study on the single crystals of 3](OTf)(4) and 8](OTf)(4) also indicated the formation 2 + 2] self-assembled macrocycles. Despite the possibility of formation of different conformational isomeric macrocycles (syn-and anti) and polymeric product due to free rotation of ligand sites of imidazole linkers, the selective formation of single conformational isomer (anti) as the only product is quite interesting. Furthermore, the photo-and electrochemical properties of these assemblies have been studied using UV/Vis absorption and cyclic voltammetry analysis. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
The vertical uplift resistance of two closely spaced horizontal strip plate anchors has been investigated by using lower and upper bound theorems of the limit analysis in combination with finite elements and linear optimization. The interference effect on uplift resistance of the two anchors is evaluated in terms of a nondimensional efficiency factor (eta(c)). The variation of eta(c) with changes in the clear spacing (S) between the two anchors has been established for different combinations of embedment ratio (H/B) and angle of internal friction of the soil (phi). An interference of the anchors leads to a continuous reduction in uplift resistance with a decrease in spacing between the anchors. The uplift resistance becomes a minimum when the two anchors are placed next to each other without any gap. The critical spacing (S-cr) between the two anchors required to eliminate the interference effect increases with an increase in the values of both H/B and phi. The value of S-cr was found to lie approximately in the range 0.65B-1.5B with H/B = 1 and 11B-14B with H/B = 7 for phi varying from 0 degrees to 30 degrees.
Resumo:
Synthesis and characterization of cis, trans-RuH(eta(2)-H-2)(PPh3)(2)(N-N)]OTf] (N-N = 2,2'-bipyridyl (bpy) 1a, 2,2'-bipyrimidine (bpm) 2a; OTf = trifluoromethane sulfonate (CF3SO3)) complexes are reported. The cis-H-2/hydride ligands are involved in H-atom site exchange between the two moieties. This dynamics was investigated by variable temperature NMR spectral studies based on which the mechanism of the exchange process was deduced. The Delta G(#) for the exchange of H-atoms between the eta(2)-H-2 and hydride ligands was determined to be around 8 and 13 kJ mol(-1), respectively, for 1a and 2a. The H-H distances (d(HH), A) in complexes 1a and 2a have been calculated from the T-1(minimum) and (1)J(H, D) and are found to be 1.07 A (slow) and 0.95 A for 1a and 1.04 A (slow) and 0.94 A for 2a, respectively. The molecular structure of 1a was determined by X-ray crystallography.
Resumo:
The vertical uplift resistance of two interfering rigid strip plate anchors embedded horizontally at the same level in clay has been examined. The lower and upper bound theorems of the limit analysis in combination with finite-elements and linear optimization have been employed to compute the failure load in a bound form. The analysis is meant for an undrained condition and it incorporates the increase of cohesion with depth. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (eta c gamma) resulting from the combined components of soil cohesion (c) and soil unit weight (gamma), has been computed for different values of embedment ratio (H/B), the rate of linear increase of cohesion with depth (m) and normalized unit weight (gamma H/c). The magnitude of eta c gamma has been found to reduce continuously with a decrease in the spacing between the anchors, and the uplift resistance becomes minimum for S/B=0. It has been noted that the critical spacing between the anchors required to eliminate the interference effect increases continuously with (1) an increase in H/B, and (2) a decrease in m.
Resumo:
Insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(mu-Br)](2) with various alkynes in CH2Cl2 under ambient conditions afforded diinserted eight-membered palladacycles, (kappa(2)(C,N):eta(2)(C=C)-PdBr] (1-11), in high yield (76-96%), while insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(Lewis base)Br] (VI-XI), with various alkynes under the aforementioned conditions afforded monoinserted six-membered palladacycles, kappa(2)(C,N)-Pd(Lewis base)Br] (12-21), in high yield (81-91%) except for 14 (23%). The insertion reaction of VI with 2 equiv of dimethyl acetylenedicarboxylate (DMAD) and the insertion reaction of 12 with 1 equiv of DMAD in CH2Cl2 under ambient conditions resulted in the formation of a diinserted zwitterionic five-membered palladacycle, kappa(2)(C,C)Pd(2,6-lutidine)Br] (22), in 76% and 70% yields, respectively. Palladacycle 22 upon reaction with AgOTf in wet MeCN afforded the ionic palladacycle kappa(2)(C,C)Pd(2,6-lutidine)(H2O)]OTf] (23) in 78% yield. The ring size of the ``kappa(2)(C,N)Pd]'' unit in the structurally characterized diinserted palladacycles (1 center dot 2CH(2)Cl(2)center dot H2O, 2, 5, and 7), and monoinserted palladacycles (17, 18, and 20 center dot C7H8 H2O) is smaller than that anticipated for mono- and diinserted palladacycles, and this feature is mainly ascribed to the proclivity of III-XI to undergo ring contraction cum amine-imine tautomerization upon alkyne insertion. Palladacycle 22 represents the first diinserted product obtained in alkyne insertion reactions of kappa(2)(C,N)Pd(Lewis base)X] type palladarycles. The molecular structure of 22 center dot H2O determined by X-ray diffraction indicates that the positive charge on the guanidinium moiety is balanced by the negative charge on the palladium atom and thus represents the first structurally characterized zwitterionic palladacycle to be reported in alkyne insertion chemistry. Plausible mechanisms of formation of 12-21 and 22 have been outlined. The presence of more than one species in solution for some of the palladacycles in the series 1-7 and 12-21 was explained by invoking the C-N single-bond rotation of the CN3 unit of the guanidine moiety, while this process in conjunction with Pd-N(lutidine) bond rotation was invoked to explain the presence of four isomers of 15, as studied with the aid of variable-concentration H-1 NMR experiments carried out for 14 and 15.
Resumo:
The organometallic complex of (eta(6)-cymene)Ru(II)Br with 6-thioguanine (6-TG) shows better photostability than the biologically active 6-thioguanine which is used as an immunosuppressant and as an anticancer agent.
Resumo:
A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).
Resumo:
We calculate one, two and three point functions of the holographic stress tensor for any bulk Lagrangian of the form L (g(ab), R-abcd, del(e) R-abcd). Using the first law of entanglement, a simple method has recently been proposed to compute the holographic stress tensor arising from a higher derivative gravity dual. The stress tensor is proportional to a dimension dependent factor which depends on the higher derivative couplings. In this paper, we identify this proportionality constant with a B-type trace anomaly in even dimensions for any bulk Lagrangian of the above form. This in turn relates to C-T, the coefficient appearing in the two point function of stress tensors. We use a background field method to compute the two and three point function of stress tensors for any bulk Lagrangian of the above form in arbitrary dimensions. As an application we consider general situations where eta/s for holographic plasmas is less than the KSS bound.
Resumo:
Self-assembly of a chloro-bridged half-sandwich p-cymene ruthenium(II) complex Ru-2(mu-Cl-2)(eta(6)-p-cymene)(2)Cl-2] 1 with linear ditopic donor L; trans-1,2-bis(4-pyridyl) ethylene] in presence of 2 eq. AgNO3 in CH3CN yielded a chloro-bridged molecular rectangle 2. The rectangle 2 was isolated as nitrate salt in high yield (90 %) and characterized by infra-red, H-1 NMR spectroscopy including ESI-MS analyses. Molecular structure of 2 was determined by single crystal X-ray diffraction study The diffraction analysis shows that 2 adopts a tetranuclear rectangular geometry with the dimensions of 5.51 angstrom x 13.29 angstrom and forming an infinite supramolecular chain with large internal porosity arising through multiple pi-pi and CH-pi interactions between the adjacent rectangles. Furthermore, rectangle 2 is used as selective receptor for phenolic-nitroaromatic compounds such as picric acid, dinitrophenol and nitrophenol.
Resumo:
Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We study models of interacting fermions in one dimension to investigate the crossover from integrability to nonintegrability, i.e., quantum chaos, as a function of system size. Using exact diagonalization of finite-sized systems, we study this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L -> infinity nonintegrability sets in for an arbitrarily small integrability-breaking perturbation. The crossover value of the perturbation scales as a power law similar to L-eta when the integrable system is gapless. The exponent eta approximate to 3 appears to be robust to microscopic details and the precise form of the perturbation. We conjecture that the exponent in the power law is characteristic of the random matrix ensemble describing the nonintegrable system. For systems with a gap, the crossover scaling appears to be faster than a power law.
Resumo:
In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe0.2Co3.8Sb11.5Te0.5 (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT= 0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as eta= 0.273 %.
Resumo:
Let G = -Delta(xi) - vertical bar xi vertical bar(2) partial derivative(2)/partial derivative eta(2) be the Grushin operator on R-n x R. We prove that the Riesz transforms associated to this operator are bounded on L-p(Rn+1), 1 < p < infinity, and their norms are independent of dimension n.
Resumo:
A new ruthenium pincer complex RuHCl(CO)(PNP)] (PNP = PhCH2N(CH2CH2PPh2)(2)) (1) was synthesized and characterized. The reactivity of complex 1 with electrophilic reagents XOTf (X = H, CH3, and Me3Si; OTf = CF3SO3) was studied by variable temperature NMR spectroscopy with an aim to observe and characterize sigma complexes of type Ru(eta(2)-HX)Cl(CO)(PNP)]OTf] (X = H (2), CH3 (3), Me3Si (4)). Reaction of complex 1 with HOTf resulted in the formation of the dihydrogen complex, Ru(eta(2)-H-2)Cl(CO)(PNP)OTf] (2). On the other hand, the reaction between complex 1 and MeOTf and Me3SiOTf resulted in the direct elimination of MeCl and Me3SiCl via a S(N)2 type of reaction without the intermediacy of the respective sigma complexes 3 and 4. This contrasting reactivity behaviour has been rationalized taking into consideration the approach of the relatively bulky electrophites CH3+ and Me3Si+ onto the hydride moiety of the ruthenium fragment, which is sterically hindered.
Resumo:
Depalladation of the monoalkyne-inserted cyclopalldated guanidines (kappa 2(C,N)Pd(2,6-Me2C5H3N)Br] (I and II) in PhCl under reflux conditions and that of the dialkyne-inserted cyclopalladated guanidine kappa(2)(C,N):eta(2)(C=C)PdBr] (III) in pyridine under reflux conditions afforded a guanidine-containing indole (1), imidaziondole (2), and benzazepine (3) in 80%, 67%, and 76%, yields, respectively. trans-L2PdBr2] species (L = 2,6-Me2C5H3N, C5H5N) were also isolated in the aforementioned reactions in 35%, 42%, and 40% yields. Further , the reaction of the cyclopalladated guanidine kappa(2)(C,N)Pd(mu-Br)](2) (IV) with AgBF4 in a CH2Cl2/MeCN mixture afforded the cationic pincer type cyclopalladated guanidine kappa(3)(C,N,O)Pd(MeCN)]BF4] (4) in 85% yield and this palladacycle upon crystallization in MeCN and the reaction of kappa(2)(C,N)Pd(mu-Br)](2) (V) with AgBf(4) in a CH2Cl2/MeCN mixture afforded the cationic palladacycles {kappa(2)(C,N)Pd(MeCN)(2)]BF4](5 and 6) in 89% and 91% yields, respectively. The separate reactions of 4 with 2 equiv of methyl phenylpropiolate (MPP) or diphenylacetylene (DPA) and the reaction of 5 with 2 equiv of MPP in PhCl at 110 degrees C afforded the guanidine-containing quinazolinium tetrafluoroborate 7 in 25-32% yields. The reaction of 6 with 2 equiv of DPA under otherwise identical conditions afforded the unsymmetrically substituted guanidinium tetrafluoroborate 8, containing a highly substituted naphthalene unit, in 82% yield. Compounds 1-8 were characterized by analytical and spectroscopic techniques, and all compounds except 4 were characterized by single-crystal X-ray diffraction. The Molecular structure of 2 and 3 are nove, as the framework in the former arises due to the formation of two C-N bonds upon depalladation while the butadienyl unit in the latter revealed cis,cis stereochemistry, a-feature unprecedented in alkyne insertion chemistry. Plausible pathways for the formation of heterocycles/carbocycles are proposed. the influence of substitutents on the aryl rings fo the cyclopalladated guanidine moiety and those on alkynes upon the nature of the products in addressed. Heterocycles 1 and 7 revealed the presence of two rotamers in about a 1.00:0.43 ratio in CDCl3 and in about a 1.00:0.14 ratio in CD3OD, respectively, as detected by H-1 NMR spectroscopy while in CD3CN and DMSO-d(6) (1) and CD3CN and CDCl3 (7), these heterocycles revealed the presence of a single rotamer. These spectral features are attributed to the restricted C-N single-bond rotation of the CN3 unit of the guanidine moiety, which possibly arises from steric constraint due to the formation of a N-H center dot center dot center dot Cl hydrogen bond with CDCl3 (1) and N-H center dot center dot center dot O and O-D center dot center dot center dot O hydrogen bonds with CD3OD (7).