152 resultados para secure image retrieval
Resumo:
A novel approach that can more effectively use the structural information provided by the traditional imaging modalities in multimodal diffuse optical tomographic imaging is introduced. This approach is based on a prior image-constrained-l(1) minimization scheme and has been motivated by the recent progress in the sparse image reconstruction techniques. It is shown that the proposed framework is more effective in terms of localizing the tumor region and recovering the optical property values both in numerical and gelatin phantom cases compared to the traditional methods that use structural information. (C) 2012 Optical Society of America
Resumo:
Traditional image reconstruction methods in rapid dynamic diffuse optical tomography employ l(2)-norm-based regularization, which is known to remove the high-frequency components in the reconstructed images and make them appear smooth. The contrast recovery in these type of methods is typically dependent on the iterative nature of method employed, where the nonlinear iterative technique is known to perform better in comparison to linear techniques (noniterative) with a caveat that nonlinear techniques are computationally complex. Assuming that there is a linear dependency of solution between successive frames resulted in a linear inverse problem. This new framework with the combination of l(1)-norm based regularization can provide better robustness to noise and provide better contrast recovery compared to conventional l(2)-based techniques. Moreover, it is shown that the proposed l(1)-based technique is computationally efficient compared to its counterpart (l(2)-based one). The proposed framework requires a reasonably close estimate of the actual solution for the initial frame, and any suboptimal estimate leads to erroneous reconstruction results for the subsequent frames.
Resumo:
Bidirectional relaying, where a relay helps two user nodes to exchange equal length binary messages, has been an active area of recent research. A popular strategy involves a modified Gaussian MAC, where the relay decodes the XOR of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes. In this work, we consider the Gaussian MAC in bidirectional relaying with an additional secrecy constraint for protection against a honest but curious relay. The constraint is that, while the relay should decode the XOR, it should be fully ignorant of the individual messages of the users. We exploit the symbol addition that occurs in a Gaussian MAC to design explicit strategies that achieve perfect independence between the received symbols and individual transmitted messages. Our results actually hold for a more general scenario where the messages at the two user nodes come from a finite Abelian group G, and the relay must decode the sum within G of the two messages. We provide a lattice coding strategy and study optimal rate versus average power trade-offs for asymptotically large dimensions.
Resumo:
We address the problem of phase retrieval, which is frequently encountered in optical imaging. The measured quantity is the magnitude of the Fourier spectrum of a function (in optics, the function is also referred to as an object). The goal is to recover the object based on the magnitude measurements. In doing so, the standard assumptions are that the object is compactly supported and positive. In this paper, we consider objects that admit a sparse representation in some orthonormal basis. We develop a variant of the Fienup algorithm to incorporate the condition of sparsity and to successively estimate and refine the phase starting from the magnitude measurements. We show that the proposed iterative algorithm possesses Cauchy convergence properties. As far as the modality is concerned, we work with measurements obtained using a frequency-domain optical-coherence tomography experimental setup. The experimental results on real measured data show that the proposed technique exhibits good reconstruction performance even with fewer coefficients taken into account for reconstruction. It also suppresses the autocorrelation artifacts to a significant extent since it estimates the phase accurately.
Resumo:
Image-guided diffuse optical tomography has the advantage of reducing the total number of optical parameters being reconstructed to the number of distinct tissue types identified by the traditional imaging modality, converting the optical image-reconstruction problem from underdetermined in nature to overdetermined. In such cases, the minimum required measurements might be far less compared to those of the traditional diffuse optical imaging. An approach to choose these optimally based on a data-resolution matrix is proposed, and it is shown that such a choice does not compromise the reconstruction performance. (C) 2013 Optical Society of America
Resumo:
Regenerating codes are a class of codes for distributed storage networks that provide reliability and availability of data, and also perform efficient node repair. Another important aspect of a distributed storage network is its security. In this paper, we consider a threat model where an eavesdropper may gain access to the data stored in a subset of the storage nodes, and possibly also, to the data downloaded during repair of some nodes. We provide explicit constructions of regenerating codes that achieve information-theoretic secrecy capacity in this setting.
Resumo:
This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
Western Blot analysis is an analytical technique used in Molecular Biology, Biochemistry, Immunogenetics and other Molecular Biology studies to separate proteins by electrophoresis. The procedure results in images containing nearly rectangular-shaped blots. In this paper, we address the problem of quantitation of the blots using automated image processing techniques. We formulate a special active contour (or snake) called Oblong, which locks on to rectangular shaped objects. Oblongs depend on five free parameters, which is also the minimum number of parameters required for a unique characterization. Unlike many snake formulations, Oblongs do not require explicit gradient computations and therefore the optimization is carried out fast. The performance of Oblongs is assessed on synthesized data and Western Blot Analysis images.
Resumo:
A new multi-sensor image registration technique is proposed based on detecting the feature corner points using modified Harris Corner Detector (HDC). These feature points are matched using multi-objective optimization (distance condition and angle criterion) based on Discrete Particle Swarm Optimization (DPSO). This optimization process is more efficient as it considers both the distance and angle criteria to incorporate multi-objective switching in the fitness function. This optimization process helps in picking up three corresponding corner points detected in the sensed and base image and thereby using the affine transformation, the sensed image is aligned with the base image. Further, the results show that the new approach can provide a new dimension in solving multi-sensor image registration problems. From the obtained results, the performance of image registration is evaluated and is concluded that the proposed approach is efficient.
Resumo:
The mode I fracture toughness of concrete can be experimentally determined using three point bend beam in conjunction with digital image correlation (DIC). Three different geometrically similar sizes of beams are cast for this study. To study the influence of fly ash and silica fume on fracture toughness of SCC, three SCC mixes are prepared with and without mineral additions. The scanning electron microscope (SEM) images are taken on the fractured surface to add information on fracture process in SCC. From this study, it is concluded that the fracture toughness of SCC with mineral addition is higher when compared to those without mineral addition.
Resumo:
The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Medical image segmentation finds application in computer-aided diagnosis, computer-guided surgery, measuring tissue volumes, locating tumors, and pathologies. One approach to segmentation is to use active contours or snakes. Active contours start from an initialization (often manually specified) and are guided by image-dependent forces to the object boundary. Snakes may also be guided by gradient vector fields associated with an image. The first main result in this direction is that of Xu and Prince, who proposed the notion of gradient vector flow (GVF), which is computed iteratively. We propose a new formalism to compute the vector flow based on the notion of bilateral filtering of the gradient field associated with the edge map - we refer to it as the bilateral vector flow (BVF). The range kernel definition that we employ is different from the one employed in the standard Gaussian bilateral filter. The advantage of the BVF formalism is that smooth gradient vector flow fields with enhanced edge information can be computed noniteratively. The quality of image segmentation turned out to be on par with that obtained using the GVF and in some cases better than the GVF.
Resumo:
We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.
Resumo:
A new technique is proposed for multisensor image registration by matching the features using discrete particle swarm optimization (DPSO). The feature points are first extracted from the reference and sensed image using improved Harris corner detector available in the literature. From the extracted corner points, DPSO finds the three corresponding points in the sensed and reference images using multiobjective optimization of distance and angle conditions through objective switching technique. By this, the global best matched points are obtained which are used to evaluate the affine transformation for the sensed image. The performance of the image registration is evaluated and concluded that the proposed approach is efficient.