133 resultados para relative entropy
Resumo:
Most of the existing WCET estimation methods directly estimate execution time, ET, in cycles. We propose to study ET as a product of two factors, ET = IC * CPI, where IC is instruction count and CPI is cycles per instruction. Considering directly the estimation of ET may lead to a highly pessimistic estimate since implicitly these methods may be using worst case IC and worst case CPI. We hypothesize that there exists a functional relationship between CPI and IC such that CPI=f(IC). This is ascertained by computing the covariance matrix and studying the scatter plots of CPI versus IC. IC and CPI values are obtained by running benchmarks with a large number of inputs using the cycle accurate architectural simulator, Simplescalar on two different architectures. It is shown that the benchmarks can be grouped into different classes based on the CPI versus IC relationship. For some benchmarks like FFT, FIR etc., both IC and CPI are almost a constant irrespective of the input. There are other benchmarks that exhibit a direct or an inverse relationship between CPI and IC. In such a case, one can predict CPI for a given IC as CPI=f(IC). We derive the theoretical worst case IC for a program, denoted as SWIC, using integer linear programming(ILP) and estimate WCET as SWIC*f(SWIC). However, if CPI decreases sharply with IC then measured maximum cycles is observed to be a better estimate. For certain other benchmarks, it is observed that the CPI versus IC relationship is either random or CPI remains constant with varying IC. In such cases, WCET is estimated as the product of SWIC and measured maximum CPI. It is observed that use of the proposed method results in tighter WCET estimates than Chronos, a static WCET analyzer, for most benchmarks for the two architectures considered in this paper.
Resumo:
We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J(2)) and dimerization (delta). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J(2)-delta plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.
Resumo:
Geologic evidence along the northern part of the 2004 Aceh-Andaman rupture suggests that this region generated as many as five tsunamis in the prior 2000years. We identify this evidence by drawing analogy with geologic records of land-level change and the tsunami in 2004 from the Andaman and Nicobar Islands (A&N). These analogs include subsided mangrove swamps, uplifted coral terraces, liquefaction, and organic soils coated by sand and coral rubble. The pre-2004 evidence varies in potency, and materials dated provide limiting ages on inferred tsunamis. The earliest tsunamis occurred between the second and sixth centuries A.D., evidenced by coral debris of the southern Car Nicobar Island. A subsequent tsunami, probably in the range A.D. 770-1040, is inferred from deposits both in A&N and on the Indian subcontinent. It is the strongest candidate for a 2004-caliber earthquake in the past 2000years. A&N also contain tsunami deposits from A.D. 1250 to 1450 that probably match those previously reported from Sumatra and Thailand, and which likely date to the 1390s or 1450s if correlated with well-dated coral uplift offshore Sumatra. Thus, age data from A&N suggest that within the uncertainties in estimating relative sizes of paleo-earthquakes and tsunamis, the 1000year interval can be divided in half by the earthquake or earthquakes of A.D. 1250-1450 of magnitude >8.0 and consequent tsunamis. Unlike the transoceanic tsunamis generated by full or partial rupture of the subduction interface, the A&N geology further provides evidence for the smaller-sized historical tsunamis of 1762 and 1881, which may have been damaging locally.
Resumo:
Two multicriterion decision-making methods, namely `compromise programming' and the `technique for order preference by similarity to an ideal solution' are employed to prioritise 22 micro-catchments (A1 to A22) of Kherthal catchment, Rajasthan, India and comparative analysis is performed using the compound parameter approach. Seven criteria - drainage density, bifurcation ratio, stream frequency, form factor, elongation ratio, circulatory ratio and texture ratio - are chosen for the evaluation. The entropy method is employed to estimate weights or relative importance of the criterion which ultimately affects the ranking pattern or prioritisation of micro-catchments. Spearman rank correlation coefficients are estimated to measure the extent to which the ranks obtained are correlated. Based on the average ranking approach supported by sensitivity analysis, micro-catchments A6, A10, A3 are preferred (owing to their low ranking) for further improvements with suitable conservation and management practices, and other micro-catchments can be processed accordingly at a later phase on a priority basis. It is concluded that the present approach can be explored for other similar situations with appropriate modifications.
Resumo:
We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena 1] have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.
Resumo:
Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.
Resumo:
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.
Resumo:
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the timetime component of the Brown-York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean actionmethods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription.
Resumo:
Entanglement entropy in local quantum field theories is typically ultraviolet divergent due to short distance effects in the neighborhood of the entangling region. In the context of gauge/gravity duality, we show that surface terms in general relativity are able to capture this entanglement entropy. In particular, we demonstrate that for 1+1-dimensional (1 + 1d) conformal field theories (CFTs) at finite temperature whose gravity dual is Banados-Teitelboim-Zanelli (BTZ) black hole, the Gibbons-Hawking-York term precisely reproduces the entanglement entropy which can be computed independently in the field theory.
Resumo:
We consider generalized gravitational entropy in various higher derivative theories of gravity dual to four dimensional CFTs using the recently proposed regularization of squashed cones. We derive the universal terms in the entanglement entropy for spherical and cylindrical surfaces. This is achieved by constructing the Fefferman-Graham expansion for the leading order metrics for the bulk geometry and evaluating the generalized gravitational entropy. We further show that the Wald entropy evaluated in the bulk geometry constructed for the regularized squashed cones leads to the correct universal parts of the entanglement entropy for both spherical and cylindrical entangling surfaces. We comment on the relation with the Iyer-Wald formula for dynamical horizons relating entropy to a Noether charge. Finally we show how to derive the entangling surface equation in Gauss-Bonnet holography.
Resumo:
Formation flying of small spacecraft provides a way to improve the resolution by aperture distribution. This requires autonomous control of relative position and relative attitude. The present work addresses the formation control using a PID controller to maintain both relative position and relative attitude. To avoid continuous pulsing due to noise, a dead-band has been provided in the position loop. PID control has been selected to maintain the formation in the presence of unmodeled disturbances. Simulations show that the proposed controller meets the required translational and rotational relative motions even in the presence of disturbances.
Resumo:
We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS(3). The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes.
Resumo:
Maximum entropy approach to classification is very well studied in applied statistics and machine learning and almost all the methods that exists in literature are discriminative in nature. In this paper, we introduce a maximum entropy classification method with feature selection for large dimensional data such as text datasets that is generative in nature. To tackle the curse of dimensionality of large data sets, we employ conditional independence assumption (Naive Bayes) and we perform feature selection simultaneously, by enforcing a `maximum discrimination' between estimated class conditional densities. For two class problems, in the proposed method, we use Jeffreys (J) divergence to discriminate the class conditional densities. To extend our method to the multi-class case, we propose a completely new approach by considering a multi-distribution divergence: we replace Jeffreys divergence by Jensen-Shannon (JS) divergence to discriminate conditional densities of multiple classes. In order to reduce computational complexity, we employ a modified Jensen-Shannon divergence (JS(GM)), based on AM-GM inequality. We show that the resulting divergence is a natural generalization of Jeffreys divergence to a multiple distributions case. As far as the theoretical justifications are concerned we show that when one intends to select the best features in a generative maximum entropy approach, maximum discrimination using J-divergence emerges naturally in binary classification. Performance and comparative study of the proposed algorithms have been demonstrated on large dimensional text and gene expression datasets that show our methods scale up very well with large dimensional datasets.
Resumo:
The RES-TOCSY experiment for accurate determination of heteronuclear (n)J(HF) is reported. The main feature of the proposed technique is the accurate measurement of magnitudes of heteronuclear couplings from the displacement of cross sections of the 2D spectrum and their relative signs from the slopes of their displacement vectors. The experiment is highly advantageous as the couplings of smaller magnitudes hidden within line widths could also be accurately determined, and also in situations when the spectrum does not display any coupling fine structures. The efficient utility of the developed pulse sequence is unambiguously established on fluorine containing aromatic and aliphatic molecules. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider free fermion and free boson CFTs in two dimensions, deformed by a chemical potential mu for the spin-three current. For the CFT on the infinite spatial line, we calculate the finite temperature entanglement entropy of a single interval perturbatively to second order in mu in each of the theories. We find that the result in each case is given by the same non-trivial function of temperature and interval length. Remarkably, we further obtain the same formula using a recent Wilson line proposal for the holographic entanglement entropy, in holomorphically factorized form, associated to the spin-three black hole in SL(3, R) x SL(3, R) Chern-Simons theory. Our result suggests that the order mu(2) correction to the entanglement entropy may be universal for W-algebra CFTs with spin-three chemical potential, and constitutes a check of the holographic entanglement entropy proposal for higher spin theories of gravity in AdS(3).