165 resultados para reflection matrix
Resumo:
There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.
Resumo:
We have synthesized specimens of nanometric lead dispersion in a glassy Al-Cu-V matrix by rapid solidification of the corresponding melt. The microstructure has been designed to avoid superconducting percolation due to coupling of the neighboring particles by the proximity effect. Using these specimens, we have determined quantitatively the effect of size of the ultrafine lead particles on the superconducting transition. (C) 1999 American Institute of Physics. [S0003-6951(99)02037-9].
The melting and solidification of nanoscale Bi particles embedded in a glassy and crystalline matrix
Resumo:
We report the formation of an amorphous phase in nanosized Pi particles embedded in an Al-based glassy alloy matrix. High-resolution electron microscopy (HREM) has been used to show that the particles contain crystalline and amorphous portions. A depression of the melting point by more than 100 K of the crystalline portion of the Pi particles was found by differential scanning calorimetric studies and by in-situ electron microscopy using a heating stage. The same techniques established the absence of an amorphous phase in the particles when the matrix is crystallized. It is shown that the formation of the amorphous phase and the depression of the melting point cannot be explained by the pressure developed by the volume change during solidification in this constrained system.
Resumo:
Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.
Resumo:
It is now clearly understood that atmospheric aerosols have a significant impact on climate due to their important role in modifying the incoming solar and outgoing infrared radiation. The question of whether aerosol cools (negative forcing) or warms (positive forcing) the planet depends on the relative dominance of absorbing aerosols. Recent investigations over the tropical Indian Ocean have shown that, irrespective of the comparatively small percentage contribution in optical depth (similar to11%), soot has an important role in the overall radiative forcing. However, when the amount of absorbing aerosols such as soot are significant, aerosol optical depth and chemical composition are not the only determinants of aerosol climate effects, but the altitude of the aerosol layer and the altitude and type of clouds are also important. In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation) are examined based on model simulations, demonstrating that aerosol forcing changes sign from negative (cooling) to positive (warming) when reflection from below (either due to land or clouds) is high.
Resumo:
We have carried out symmetrized density-matrix renormalization-group calculations to study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople Hamiltonian. We have used the C-2 symmetry, the electron-hole symmetry, and the spin parity of the system in our calculations. We find that there is a crossover in the lowest dipole forbidden two-photon state and the lowest dipole allowed excited state with size of the oligomer. In the long system limit, the two-photon state lies below the lowest dipole allowed excited state. The triplet state lies well below the two-photon state and energetically does not correspond to its description as being made up of two triplets. These results are in agreement with the general trends in linear conjugated polymers. However, unlike in linear polyenes wherein the two-photon state is a localized excitation, we find that in polyacenes, the two-photon excitation is spread out over the system. We have doped the systems with a hole and an electron and have calculated the charge excitation gap. Using the charge gap and the optical gap, we estimate the binding energy of the 1(1)B(-) exciton to be 2.09 eV. We have also studied doubly doped polyacenes and find that the bipolaron in these systems, to be composed of two separated polarons, as indicated by the calculated charge-density profile and charge-charge correlation function. We have studied bond orders in various states in order to get an idea of the excited state geometry of the system. We find that the ground state, the triplet state, the dipole allowed state, and the polaron excitations correspond to lengthening of the rung bonds in the interior of the oligomer while the two-photon excitation corresponds to the rung bond lengths having two maxima in the system.
Resumo:
In situ formations of Al2O3 + ZrO2 + SiCW ternary composite powders have been obtained by carbothermal reduction of a mixture of Sillimanite. Kaolin and Zircon using two different carbon sources. Products formed were mixtures of alumina and zirconia along with silicon carbide in the form of whiskers. The effects of composition of the reactants, the role of fineness of the starting precursors and the nature of the carbon Source on the final product powder obtained are presented. XRD and SEM analyses indicate complete reaction of the precursors to yield Al2O3 + ZrO2 + SiCW as product powders, with the SiC having whisker morphology. It is also seen that zirconia could be stabilised to some extent in the tetragonal form without any stabilising agent by tailoring the starting materials and their composition. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Nanoembedded lead-tin alloys in aluminum matrix were synthesized by rapid solidification processing. These melt-spun aluminum alloys were then investigated using XRD, EDX and TEM. The XRD study reveals that the melt-spun samples contain elemental aluminum, lead and tin. The TEM analysis shows that embedded particles in aluminium matrix have a distinct two-phase contrast of lead and tin. The lead and tin in these nanoalloys exhibit an orientation relationship with the matrix aluminum and with each other. DSC studies were conducted to reveal the melting and solidification characteristics of these embedded nanoalloys. DSC thermograms exhibit features of multiple solidification exotherms on thermal cycling, which can be attributed to sequential melting and solidification of lead and tin in the respective alloys.
Resumo:
Aluminium nitride (AlN)-Al matrices reinforced with Al2O3 particulate have been fabricated by reactive infiltration of Al-2% Mg alloy into Al2O3 preforms in N-2 in the temperature range of 900-1075 degreesC. The growth of composites of useful thickness was facilitated by the presence of a Mg-rich external getter, in the absence of which composite growth is self-limiting and terminates prematurely. Successful growth of composites has been attributed to the reduction in residual oxygen partial pressure brought about by the reaction with oxygen of highly volatile Mg in the getter alloy. The microstructure of the matrix consists of AlN-rich regions contiguous with the particulate with metal-rich channels in-between, thereby suggesting that nitridation initiates by preferential wicking of alloy along the particle surfaces. The increase in nitride content of the matrix with temperature is consistent with hardness values that vary between similar to3 and 10 GPa. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian using the Symmetrized Density Matrix Renormalization Group (SDMRG) technique. We find a crossover between the two-photon state and the lowest dipole allowed excited state as the system size is increased from tetracene to pentacene. The spin-gap is the smallest gap. We also study the equilibrium geome tries in the ground and excited states from bond orders and bond-bond correlation functions. We find that the Peierls instability in the ground state of polyacene is conditional both from energetics and structure factors computed froth correlation functions.
Resumo:
The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.
Resumo:
During lightning strike to a tall grounded object (TGO), reflections of current waves are known to occur at either ends of the TGO. These reflection modify the channel current and hence, the lightning electromagnetic fields. This study aims to identify the possible contributing factors to reflection at a TGO-channel junction for the current waves ascending on the TGO. Possible sources of reflection identified are corona sheath and discontinuity of resistance and radius. For analyzing the contribution of corona sheath and discontinuity of resistance at the junction, a macroscopic physical model for the return stroke developed in our earlier work is employed. NEC-2D is used for assessing the contribution of abrupt change in radii at a TGO-channel junction. The wire-cage model adopted for the same is validated using laboratory experiments. Detailed investigation revealed the following. The main contributor for reflection at a TGO-channel junction is the difference between TGO and channel core radii. Also, the discontinuity of resistance at a TGO-channel junction can be of some relevance only for the first microsecond regime. Further, corona sheath does not play any significant role in the reflection.