211 resultados para radiation beam
Resumo:
We report the effect of dual beam excitation on the photoluminescence (PL) from PbS quantum dots in polyvinyl alcohol by using two excitation lasers, namely Ar+ (514.5 nm) and He-Ne laser (670 nm). Both sources of excitation gave similar PL spectra around 1.67 eV (related to shallow traps) and 1.1 eV (related to deep traps). When both lasers were used at the same time, we found that the PL induced by each of the lasers was partly quenched by the illumination of the other laser. The proposed mechanism of this quenching effect involves traps that are populated by one specific laser excitation, being photo-ionized by the presence of the other laser. Temperature, laser intensity and modulation frequency dependent quenching efficiencies are presented in this paper. This reversible modulation has potential for optical switching and memory device applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.
Resumo:
Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.
Resumo:
In an earlier work, we had proposed a two-band, non-grey radiative transfer model for heat transfer in forehearths with simultaneous optically thick and thin approximations for molten glass interiors and at boundaries. Here using the same model, the radiative interaction of the top-crown and bottom-refractory walls with interior layers of shallow molten glass is studied by varying the wall emissivities. The forehearth exit temperature profiles for higher wall emissivities (0.9) show better conditioning of the glass for white flint glasses (optically thin).
Resumo:
We report the structural and optical properties of a-plane GaN film grown on r-plane sapphire substrate by plasma-assisted molecular beam epitaxy. High resolution X-ray diffraction was used to determine the out-of-plane and in-plane epitaxial relation of a-plane GaN to r-plane sapphire. Low-temperature photoluminescence emission was found to be dominated by basal stacking faults along with near-band emission. Raman spectroscopy shows that the a-GaN film is of reasonably good quality and compressively strained. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Optical and structural properties of reactive ion beam sputter deposited CeO2 films as a function of oxygen partial pressures (P-O2) and substrate temperatures (T-s) have been investigated. The films deposited at ambient temperature with P-O2 of 0.01 Pa have shown a refractive index of 2.36 which increased to 2.44 at 400 degrees C. Refractive index and extinction coefficient are sensitive up to a T-s of similar to 200 degrees C. Raman spectroscopy and X-ray diffraction (XRD) have been used to characterise the structural properties. A preferential orientation of (220) was observed up to a T-s of 200 degrees C and it changed to (200) at 400 degrees C: and above. Raman line broadening, peak shift and XRD broadening indicate the formation of nanocrystalline phase for the films deposited up to a substrate temperature of 300 degrees C. However, crystallinity of the films were better for T-s values above 300 degrees C. In general both optical and structural properties were unusual compared to the films deposited by conventional electron beam evaporation, but were similar in some aspects to those deposited by ion-assisted deposition. Apart from thermal effects, this behavior is also attributed to the bombardment of backscattered ions/neutrals on the growing film as well as the higher kinetic energy of the condensing species, together resulting in increased packing density. (C) 1997 Elsevier Science S.A.
Resumo:
The results of an X-ray reflectivity study of thick AlAs-AlGaAs and thin GeSi-Ge multilayers grown using metal-organic vapour-phase epitaxy and ion-beam sputtering deposition techniques, respectively, are presented. Asymmetry in interfaces is observed in both of these semiconductor multilayers. It is also observed that although the Si-on-Ge interface is sharp, an Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface. In the case of the III-V semiconductor, the AlAs-on-AlGaAs interface shows much greater roughness than that observed in the AlGaAs-on-AlAs interface. For thin multilayers it is demonstrated that the compositional profile as a function of depth can be obtained directly from the X-ray reflectivity data.
Resumo:
The behaviour of rat lenticular enzymes, glucose-6-phosphate dehydrogena.se (G6PD, EC: 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGD, EC: 1.1.1.44) as a function of age and UVB irradiation (in vitro) was investigated by irradiating the lens homogenate from 3-and 12-month-old rats at 300 nm (100 μW cm 2). In the 3-month-old group the specific activities of G6PD and 6PGD were reduced by 26% and 42%, respectively, after 24 h of irradiation, whereas in the 12-month-old group the decrease was 38% and 49% respectively, which suggests that the susceptibility of HMPS enzymes to UVB damage is higher in older lenses. The decrease in specitic activity was associated with a change in apparent Km and Vmax (marginal in 3 months and significant in 12 months) of these enzymes due to UVB irradiation. UVB irradiation also decreased the levels of NADPH and NADPH/NADP ratio. These changes, altered activities of G6PD and 6PGD and altered levels of NADPH. may in turn have a bearing on lens transparency.
Resumo:
Electron beam surface melting has been used to characterise the phase content formed in a number of model 1200 series Al alloys with increasing solidification velocity in the range 2–50 mm s−1, typical of that experienced during continuous strip casting. Phases were extracted from the Al matrix and analysed by X-ray diffraction. A qualitative solidification microstructure selection map has been produced, showing that, for a given Fe content of 0.55 wt.%: with increasing solidification velocity the metastable aluminides FeAl6 and FeAlm displace equilibrium Fe4Al13 at Si contents
Resumo:
The facile method of solution combustion was used to synthesize gamma(L)-Bi(2)MoO(6). The material was crystallized in a purely crystalline orthorhombic phase with sizes varying from 300 to 500 nm. Because the band gap was 2.51 eV, the degradation of wide variety of cationic and anionic dyes was investigated under solar radiation. Despite the low surface area (< 1 m(2)/g) of the synthesized material, gamma(L)-Bi(2)MoO(6) showed high photocatalytic activity under solar radiation due to its electronic and morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new beam element is developed to study the thermoelastic behavior of functionally graded beam structures. The element is based on the first-order shear deformation theory and it accounts for varying elastic and thermal properties along its thickness. The exact solution of static part of the governing differential equations is used to construct interpolating polynomials for the element formulation. Consequently, the stiffness matrix has super-convergent property and the element is free of shear locking. Both exponential and power-law variations of material property distribution are used to examine different stress variations. Static, free vibration and wave propagation problems are considered to highlight the behavioral difference of functionally graded material beam with pure metal or pure ceramic beams. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be tetragonal with lattice parameters close to that reported for Zr2Ni. However, the composition of this phase is different as it contains other alloying additions. The interface layer close to the bulk metallic glass side contains nanocrystalline Zr2Cu phase embedded in the glassy matrix. Nanoindentation experiments indicate that the hardness of the crystalline layer, although less than the bulk metallic glass, is more than the Zr itself. Commensurately, tensile tests indicate that the failure of the welded samples occurs at the Zr side rather than at the weld joint.
Resumo:
The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.
Resumo:
We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.
Resumo:
Multiple beam interference of light in a wedge is considered when the wedge is filled with an absorbing medium. The aim is to examine a method that may give values of both the real and the imaginary parts of the refractive index of the absorbing medium. We propose here a method to determine these quantities from simple techniques like fringe counting and interferometry, by using as the incident wave either a single Gaussian beam or two parallel Gaussian beams.