121 resultados para partial defence of provocation
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
The thermodynamic stability of the compound BaCu2O2 was determined using a solid-state galvanic cell: View the MathML source as a function of temperature in the range 970–1170 K. Single crystal BaF2 was used as the solid electrolyte. The partial pressure of oxygen in the argon gas flowing over the electrodes was 1.27 Pa. The reversible e.m.f. of the cell can be expressed by View the MathML source. The Gibbs free energy of formation of barium cuprite from component oxides according to the reaction View the MathML source is View the MathML source.
Resumo:
Sulfur and oxygen dissolved in nickel and cupronickel melts can be remwed as gaseous oxides of sulfur by a vacuum treatment. Presented in this paper is a new matched thermcxhemical disgran~ that permit.. direct evaluation of the equilibrium partial pressure of SO, as a function of temperature wer an alloy of specified compition. The matched thermochemical diagram consists of a central plot which shows the integral Gibbs' energy of mixing for the binary system SO, at different temperatures. The central plot is flanked on either side by terminal plots of the chemical potentials of oxygen and sulfur, as functions of temperature, for different alloy compositions. By projecting the chemical wtentials of oxygen and sulfur from the terminal lots on to the central diagram, ihe equilibrium partial pressure of S0,can be directly ;cad on the nomograms on the central plot at different temperatures. The matched therrnochemical diagrams are useful in assuring the efficiency of vacuum refining.
Resumo:
The standard Gibbs' free energies of formation of compounds of type Cu2L%05 (Ln = Tb,Dy,Er,Yb) were measured using the solid state cell in the temperature range of 970 to 1323 K For formation of Cu2L?O5 compounds from their binary component oxides according to the reaction 2 CUO (s) + L%03 (s) -, Cu,,L%05 (s),the Gibbs' free energy changes can be represented by the following equations:AGO = 13 080 - 13.70 'I" (+80) J mol-' (Ln = Tb)AGq = 11 480 - 13.51 T (260) J mol-I (Ln = Dy)AGO = 10 750 - 13.99 T (260) J mol-I (Ln = Er)AGO = 9 920 - 13.90 T (260) J mol-' (Ln = Yb) Since formation of the compounds is endothermic, the compounds become thermodynamically unstable with respect to their component oxides below 955 K for Cu2Tb205, 850 K for Cu2Dy205, 768 K for Cu2Er205 and 714 K for Cu2Yb2OS When the oxygen partial pressure over Cu2L%05 is lowered, they decompose according to the scheme, 2 CU,L%O, (s) -r 2 L%03 (s) +2 cu20 (s) + 02(g)The equilibrium chemical potentials of oxygen corresponding to the dissociation reactions are computed from the emf data and auxiliary information on Cu20 and CuO. The computed decomposition temperatures at an oxygen partial pressure of 5.0 x ld Pa are compared with those obtained directly from combined thermogravimetric (TGA) and differential thermal analyses (DTA).The free energy, enthalpy and entropy of formation of Cu2Ln205 compounds show systematic variation with the ionic radius of the trivalent lanthanide ion. The trends obtained in this study are compared with information available in the literature. The staZbility of Cu2Ln205 compounds increases with the decrease in ionic radii of the ~ n ion~. +
Resumo:
We report that the bgl operon of Escherichia coli, encoding the functions necessary for the uptake and metabolism of aryl-beta-glucosides, is involved in the regulation of oligopeptide transport during stationary phase. Global analysis of intracellular proteins from Bgl-positive (Bgl(+)) and Bgl-negative (Bgl(-)) strains revealed that the operon exerts regulation on at least 12 downstream target genes. Of these, oppA, which encodes an oligopeptide transporter, was confirmed to be upregulated in the Bgl(+) strain. Loss of oppA function results in a partial loss of the growth advantage in stationary-phase (GASP) phenotype of Bgl(+) cells. The regulatory effect of the bgl operon on oppA expression is indirect and is mediated via gcvA, the activator of the glycine cleavage system, and gcvB, which regulates oppA at the posttranscriptional level. We show that BglG destabilizes the gcvA mRNA in vivo, leading to reduced expression of gcvA in the stationary phase. Deletion of gcvA results in the downregulation of gcvB and upregulation of oppA and can partially rescue the loss of the GASP phenotype seen in Delta bglG strains. A possible mechanism by which oppA confers a competitive advantage to Bgl(+) cells relative to Bgl(-) cells is discussed.
Resumo:
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.
Resumo:
DC reactive magnetron sputtering technique was employed for deposition of titanium dioxide (TiO2) films. The films were formed on Corning glass and p-Si (100) substrates by sputtering of titanium target in an oxygen partial pressure of 6x10-2 Pa and at different substrate temperatures in the range 303 673 K. The films formed at 303 K were X-ray amorphous whereas those deposited at substrate temperatures?=?473 K were transformed into polycrystalline nature with anatase phase of TiO2. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic bonding configuration of TiO2. The surface morphology of the films was significantly influenced by the substrate temperature. MOS capacitor with Al/TiO2/p-Si sandwich structure was fabricated and performed currentvoltage and capacitancevoltage characteristics. At an applied gate voltage of 1.5 V, the leakage current density of the device decreased from 1.8?x?10-6 to 5.4?x?10-8 A/cm2 with the increase of substrate temperature from 303 to 673 K. The electrical conduction in the MOS structure was more predominant with Schottky emission and Fowler-Nordheim conduction. The dielectric constant (at 1 MHz) of the films increased from 6 to 20 with increase of substrate temperature. The optical band gap of the films increased from 3.50 to 3.56 eV and refractive index from 2.20 to 2.37 with the increase of substrate temperature from 303 to 673 K. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Phase equilibria in the system Tm-Rh-O at 1200 K is established by isothermal equilibration of selected compositions and phase identification after quenching to room temperature. Six intermetallic phases (Tm3Rh, Tm7Rh3, Tm5Rh3, Tm3Rh2, TmRh, TmRh2 +/-delta) and a ternary oxide TmRhO3 are identified. Based on experimentally determined phase relations, a solid-state electrochemical cell is devised to measure the standard free energy of formation of orthorhombic perovskite TmRhO3 from cubic Tm2O3 and beta-Rh2O3 in the temperature range from (900 to 1300) K. The results can be summarized as: Delta G(f,ox)(o) +/- 104/J.mol(-1) = -46474 + 3.925(T/K). Invoking the Neumann-Kopp rule, the standard enthalpy of formation of TmRhO3 from its constituent elements at 298.15 K is estimated as -1193.89 (+/- 2.86) kJ.mol(-1). The standard entropy of TmRhO3 at 298.15 K is evaluated as 103.8 (+/- 1.6) J.mol(-1).K-1. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1200 K and temperature-composition diagrams at constant partial pressures of oxygen are computed from thermodynamic data. The compound TmRhO3 decomposes at 1688 (+/- 2) K in pure oxygen and at 1583 (+/- 2) K in air at standard pressure.
Resumo:
p53 mRNA has been shown to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform Delta N-p53, which modulates the functions of FL-p53 and also has independent functions. Previously, we have shown that translation of p53 and Delta N-p53 can be initiated at Internal Ribosome Entry Sites (IRES). These two IRESs were shown to regulate the translation of p53 and Delta N-p53 in a distinct cell-cycle phase-dependent manner. Earlier observations from our laboratory also suggest that the structural integrity of the p53 RNA is critical for IRES function and is compromised by mutations that affect the structure as well as RNA protein interactions. In the current study, using RNA affinity approach we have identified Annexin A2 and PTB associated Splicing Factor (PSF/SFPQ) as novel ITAFs for p53 IRESs. We have showed that the purified Annexin A2 and PSF proteins specifically bind to p53 IRES elements. Interestingly, in the presence of calcium ions Annexin A2 showed increased binding with p53 IRES. Immunopulldown experiments suggest that these two proteins associate with p53 mRNA ex vivo as well. Partial knockdown of Annexin A2 and PSF showed decrease in p53 IRES activity and reduced levels of both the p53 isoforms. More importantly the interplay between Annexin A2, PSF and PTB proteins for binding to p53mRNA appears to play a crucial role in IRES function. Taken together, our observations suggest pivotal role of two new trans-acting factors in regulating the p53-IRES function, which in turn influences the synthesis of p53 isoforms.
Resumo:
The Neoarchean layered anorthositic complex at Sittampundi in southern India is known for its chromitite layers that are mostly associated with anorthosite (An(90-100)). The chromitites contain FeAl-rich chromites concentrated in layers between amphibole-rich layers with a dominant mineralogy of amphibole-spinel-plagiocase+/-sapphirine. The chromite-rich layers contain only amphibole and plagioclase. Mineral compositions illustrated by X-ray composition maps and profiles show subtle chemical differences. The chrome spinels are of refractory grade with Cr2O3 and Al2O3 contents varying between 34-40 wt.% and 23-28 wt.%. The chromite compositions are noticeably different from those in layered igneous intrusions of the Bushveld-Stillwater type. The existence of original highly calcic plagioclase, FeAl-rich chromite, and magmatic amphibole is consistent with derivation from a parental magma of hydrous tholeiitic composition that was most likely generated in a supra-subduction zone arc setting. In terms of mineralogy and field relations, the Sittampundi chromitites are remarkably similar to anorthosite-hosted chromitites in the Neoarchean Fiskensset anorthositic complex, Greenland. We propose that the Sittampundi chromitites formed by partial melting of unusually aluminous harzburgite in a hydrated mantle wedge above a subduction zone. This melting process produced hydrous, aluminous basalt, which fractionated at depth to give rise to a variety of high-alumina basalt compositions from which the anorthositic complex with its cumulate chromite-rich and amphibole-rich layers formed within the magma chamber of a supra-subduction zone arc. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 degrees C via vapor-liquid-solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2-4 mu m and diameter of 20-60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 x 10(-4) mbar suggested that a temperature equal to or greater than 450 degrees C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 mu W/cm(2) UV lamp (330 nm) intensity on the photo detector.
Resumo:
The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.
Resumo:
The role of crystallite size and clustering in influencing the stability of the structures of a large tetragonality ferroelectric system 0.6BiFeO(3)-0.4PbTiO(3) was investigated. The system exhibits cubic phase for a crystallite size similar to 25 nm, three times larger than the critical size reported for one of its end member PbTiO3. With increased degree of clustering for the same average crystallite size, partial stabilization of the ferroelectric tetragonal phase takes place. The results suggest that clustering helps in reducing the depolarization energy without the need for increasing the crystallite size of free particles.
Resumo:
Geologic evidence along the northern part of the 2004 Aceh-Andaman rupture suggests that this region generated as many as five tsunamis in the prior 2000years. We identify this evidence by drawing analogy with geologic records of land-level change and the tsunami in 2004 from the Andaman and Nicobar Islands (A&N). These analogs include subsided mangrove swamps, uplifted coral terraces, liquefaction, and organic soils coated by sand and coral rubble. The pre-2004 evidence varies in potency, and materials dated provide limiting ages on inferred tsunamis. The earliest tsunamis occurred between the second and sixth centuries A.D., evidenced by coral debris of the southern Car Nicobar Island. A subsequent tsunami, probably in the range A.D. 770-1040, is inferred from deposits both in A&N and on the Indian subcontinent. It is the strongest candidate for a 2004-caliber earthquake in the past 2000years. A&N also contain tsunami deposits from A.D. 1250 to 1450 that probably match those previously reported from Sumatra and Thailand, and which likely date to the 1390s or 1450s if correlated with well-dated coral uplift offshore Sumatra. Thus, age data from A&N suggest that within the uncertainties in estimating relative sizes of paleo-earthquakes and tsunamis, the 1000year interval can be divided in half by the earthquake or earthquakes of A.D. 1250-1450 of magnitude >8.0 and consequent tsunamis. Unlike the transoceanic tsunamis generated by full or partial rupture of the subduction interface, the A&N geology further provides evidence for the smaller-sized historical tsunamis of 1762 and 1881, which may have been damaging locally.
Resumo:
Phase relations in the system Nb-Rh-O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO2, NbO2.422 and Nb2O5-x with increasing Rh. Only one ternary oxide NbRhO4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb2O5. The standard Gibbs energy of formation of NbRhO4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; Delta G(f,ox)(o)(J/mol) = -38,350 + 5.818 x T(+/- 96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb-Rh-O at 1223 K and temperature-composition diagrams at constant partial pressures of oxygen.