141 resultados para non-additive effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the trishanku (triA(-)) mutant of the social amoeba Dictyostelium discoideum, aggregates are smaller than usual and the spore mass is located mid-way up the stalk, not at the apex. We have monitored aggregate territory size, spore allocation and fruiting body morphology in chimaeric groups of (quasi-wild-type) Ax2 and triA(-) cells. Developmental canalisation breaks down in chimaeras and leads to an increase in phenotypic variation. A minority of triA(-) cells causes largely Ax2 aggregation streams to break up; the effect is not due to the counting factor. Most chimaeric fruiting bodies resemble those of Ax2 or triA(-). Others are double-deckers with a single stalk and two spore masses, one each at the terminus and midway along the stalk. The relative number of spores belonging to the two genotypes depends both on the mixing ratio and on the fruiting body morphology. In double-deckers formed from 1:1 chimaeras, the upper spore mass has more Ax2 spores, and the lower spore mass more triA(-) spores, than expected. Thus, the traits under study depend partly on the cells' own genotype and partly on the phenotypes, and so genotypes, of other cells: they are both autonomous and non-autonomous. These findings strengthen the parallels between multicellular development and behaviour in social groups. Besides that, they reinforce the point that a trait can be associated with a genotype only in a specified context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two models for large eddy simulation of turbulent reacting flow in homogeneous turbulence were studied. The sub-grid stress arising out of non-linearities of the Navier-Stokes equations were modeled using an explicit filtering approach. A filtered mass density function (FMDF) approach was used for closure of the sub-grid scalar fluctuations. A posteriori calculations, when compared with the results from the direct numerical simulation, indicate that the explicit filtering is adequate in representing the effect of sub-grid stress on the filtered velocity field in the absence of reaction. Discrepancies arise when reactions occur, but the FMDF approach suffices to account for sub-grid scale fluctuations of the reacting scalars, accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On increasing the coupling strength (lambda) of a non-Abelian gauge field that induces a generalized Rashba spin-orbit interaction, the topology of the Fermi surface of a homogeneous gas of noninteracting fermions of density rho similar to k(F)(3) undergoes a change at a critical value, lambda(T) approximate to k(F) [Phys. Rev. B 84, 014512 ( 2011)]. In this paper we analyze how this phenomenon affects the size and shape of a cloud of spin-1/2 fermions trapped in a harmonic potential such as those used in cold atom experiments. We develop an adiabatic formulation, including the concomitant Pancharatnam-Berry phase effects, for the one-particle states in the presence of a trapping potential and the gauge field, obtaining approximate analytical formulas for the energy levels for some high symmetry gauge field configurations of interest. An analysis based on the local density approximation reveals that, for a given number of particles, the cloud shrinks in a characteristic fashion with increasing.. We explain the physical origins of this effect by a study of the stress tensor of the system. For an isotropic harmonic trap, the local density approximation predicts a spherical cloud even for anisotropic gauge field configurations. We show, via a calculation of the cloud shape using exact eigenstates, that for certain gauge field configurations there is a systematic and observable anisotropy in the cloud shape that increases with increasing gauge coupling lambda. The reasons for this anisotropy are explained using the analytical energy levels obtained via the adiabatic approximation. These results should be useful in the design of cold atom experiments with fermions in non-Abelian gauge fields. An important spin-off of our adiabatic formulation is that it reveals exciting possibilities for the cold-atom realization of interesting condensed matter Hamiltonians by using a non-Abelian gauge field in conjunction with another potential. In particular, we show that the use of a spherical non-Abelian gauge field with a harmonic trapping potential produces a monopole field giving rise to a spherical geometry quantum Hall-like Hamiltonian in the momentum representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current analytical work on the effect of convection and viscoelasticity on the early and late stages of spinodal decomposition is briefly described. In the early stages, the effect of viscoelastic stresses was analysed using a simple Maxwell model for the stress, which was incorporated in the Langevin equation for the momentum field. The viscoelastic stresses are found to enhance the rate of decomposition. In the late stages, the pattern formed depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport does not have a significant effect on the growth of a single droplet, but it does result in an attractive interaction between non - Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near symmetric quench was analysed using an 'area distribution function', which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous solutions of Al and Mg nitrates have been spray pyrolysed at 673 K to synthesize powders with compositions varying between MgO and MgAl2O4. This has been carried out with the aim of studying phase selection and phase evolution in this system. The powders have been subsequently heat treated and the sequence of phases characterised by X-ray diffraction and transmission electron microscopy. Metastable extensions of the different phase fields have been calculated based on functions which predict the equilibrium phase diagram accurately. The appearance of phases is closely related to the temperature and to the non-stoichiometry in different compositional ranges of the system. The sequence of phase evolution has been correlated to the thermodynamics of nucleation in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability analysis of residual soil slopes are now increasingly being performed with the incorporation of the matric suction component of strength. The matric suction (u(a)-u(w)) component of shear strength is known as apparent cohesion. The relation between matric suction and apparent cohesion (c(app)) may be linear or non-linear. The impact of type of apparent strength versus matric suction relationship on the stability of an unsaturated residual soil slope is examined in this study. Results of the study showed that the factor of safety values were unaffected by the nature of the strength versus matric suction relationship for the residual soil slope examined. This was so as contribution from the effective stress- strength component to the factor of safety predominated over the contribution made by the apparent strength component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanotube are studied with consideration of the surface effects as well as the non-local small scale effects. Non-local elasticity theory is used to derive the general governing differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina nanotube with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties (surface integrated residual stress and surface integrated modulus) on the flexural wave characteristics of anodic nanotubes are more significant. It has been found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. It has also been shown that, with consideration of surface effects the flexural wavenumbers are under compressive nature. The effect of the small scale and the size of the nanotube on wave dispersion properties are also captured in the present work. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The altered spontaneous emission of an emitter near an arbitrary body can be elucidated using an energy balance of the electromagnetic field. From a classical point of view it is trivial to show that the field scattered back from any body should alter the emission of the source. But it is not at all apparent that the total radiative and non-radiative decay in an arbitrary body can add to the vacuum decay rate of the emitter (i.e.) an increase of emission that is just as much as the body absorbs and radiates in all directions. This gives us an opportunity to revisit two other elegant classical ideas of the past, the optical theorem and the Wheeler-Feynman absorber theory of radiation. It also provides us alternative perspectives of Purcell effect and generalizes many of its manifestations, both enhancement and inhibition of emission. When the optical density of states of a body or a material is difficult to resolve (in a complex geometry or a highly inhomogeneous volume) such a generalization offers new directions to solutions. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.