313 resultados para fracture reduction
Resumo:
The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a laboratory study of the discharge radio noise generated by ceramic insulator strings under normal conditions. In the course of study, a comparison on the performance of two types of insulator strings under two different conditions was studied namely (a) normal disc insulators in a string and (b) disc insulators integrated with a newly developed field reduction electrode fixed to the disc insulator at the pin junction. The results obtained during the study are discussed and presented.
Resumo:
Pure silicon tetrafluoride can be prepared in 66% yield from silicon tetrachloride by refluxing with lead fluoride in acetonitrile. The gas can be reduced to pure silane by lithium aluminum hydride in diethyl ether.
Resumo:
The present work is aimed at evaluating an alternative moulding system, namely, sodium aluminate bonded zircon sand mould and assess its suitability in relation to the much studied sodium silicate bonded zircon sand moulding system. It is described in the study presented here that with regard to metal - mould reaction, sodium aluminate bonded zircon sand mould system is a superior viable system as compared to sodium silicate bonded zircon moulding system at mould firing temperatures of 873 - 1473 K.
Resumo:
The equilibrium pressure of calcium corresponding to the reduction reaction 6CaO (s) + 2Al (l) half-arrow-right-over-half-arrow-left 3CaO.Al2O3 (s) + 3Ca (g) has been measured by Knudsen effusion - mass loss analysis in the temperature range 1190 - 1500 K. The measured vapour pressure can be expressed as a function of temperature by the relation: log p(Ca) (Pa) = -10,670/T + 9.267 The calcium generated is partially absorbed by aluminium to form an alloy. The equilibrium composition of the alloy at 1373 K was found to be 22 mol% Ca - 78 mol% Al. The measured vapour pressure is in good agreement with that computed from thermodynamic data.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalyst with varying atomic ratio of Pt to Ti, namely, 1: 1, 2: 1, and 3: 1, is prepared by sol-gel method and its electrocatalytic activity toward oxygen-reduction reaction (ORR) is evaluated for the application in polymer electrolyte fuel cells (PEFCs). The optimum atomic ratio of Pt to Ti in Pt-TiO2/C and annealing temperature are established by cyclic voltammetry and fuel-cell-polarization studies. Pt-TiO2/C annealed at 750 degrees C with Pt and Ti in atomic ratio of 2: 1, namely, 750 Pt-TiO2/C (2: 1), shows enhanced electrocatalytic activity toward ORR. It is found that the incorporation of TiO2 with Pt ameliorates both electrocatalytic activity and stability of cathode in relation to pristine Pt cathode, currently being used in PEFCs. A power density of 0.75 W/cm(2) is achieved at 0.6 V for the PEFC with 750 Pt-TiO2/C (2: 1) as compared with 0.62 W/cm(2) at 0.6 V achieved with the PEFC comprising Pt/C as cathode catalyst while operating under identical conditions. Interestingly, carbon-supported Pt-TiO2 cathode exhibits only 6% loss in electrochemical surface area after 5000 potential cycles while it is as high as 25% for Pt/C. DOI: 10.1115/1.4002466]
Resumo:
Several methods for improving the strength of metallic materials are available and correlations between strength and various microstructural features have been established. The purpose of this paper is to review parallel developments favouring improved fracture resistance. Resistance to fracture in monotonie loading, cyclic loading and when fracture is environment-aided have been considered in steels, aluminium alloys and anisotropic materials. Finally, the question of optimising alloy behaviour is discussed.
Resumo:
A series of anion-deficient pyrochlore oxides of the formula A2MoTiO7−x (xless-than-or-equals, slant0.5), where Atriple bond; length as m-dashSm, Gd, Tb, Dy, Ho, Er, Lu and Y, has been prepared by reduction of A2MoTiO8 scheelites. The scheelite-to-pyrochlore conversion is reversible, indicating that the reaction is likely to be topochemical. The oxidation states of molybdenum and titanium are most probably Mo(III) and Ti(IV) for the limiting composition of the pyrochlores A2MoTiO6.5. The new pyrochlores are non-metallic and paramagnetic as expected.
Resumo:
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.
Resumo:
A combination of benzyltriethylammonium borohydride and chlorotrimethylsilane (1:1) in dichloromethane (0-25°C) has been found to be a convenient reagent system for the selective reduction of carboxylic acids to alcohols.
Resumo:
Fracture behaviour of notched and un-notched plain concrete slender beams subjected to three-point or four-point bending is analyzed through a one-dimensional model, also called Softening Beam Model. Fundamental equations of equilibrium are used to develop the model. The influence of structural size in altering the fracture mode from brittle fracture to plastic collapse is explained through the stress distribution across the uncracked ligament obtained by varying the strain softening modulus. It is found that at the onset of fracture instability, stress at the crack tip is equal to zero. The maximum load and fracture load are found to be different and a unique value for the fracture load is obtained. It is shown that the length of the fracture process zone depends on the value of the strain softening modulus. Theoretical limits for fracture process zone length are also calculated. Several nonlinear fracture parameters, such as, crack tip opening displacement, crack mouth opening displacement and fracture energy are computed for a wide variety of beam specimens reported in the literature and are found to compare very well with experimental and theoretical results. It is demonstrated that by following a simple procedure, both pre-peak and post-peak portions of load versus crack mouth opening displacement curve can be obtained quite accurately. Further, a simple procedure to calculate the maximum load is also developed. The predicted values of maximum load are found to agree well with the experimental values. The Softening Beam Model (SBM), proposed in this investigation is very simple and is based on rational considerations. It can completely describe the fracture process from the beginning of formation of the fracture process zone till the onset of fracture instability.A l'aide d'un modèle unidimensionnel dit ldquoSoftening Beam Modelrdquo (SBM), on analyse le comportement à rupture de poutres élancées pleines entaillées ou non, soumises en flexion en trois ou quatre points. Des équations fondamentales d'équilibre sont utilisées pour développer le modèle. On explique l'influence de la taille du composant sur l'altération du mode de rupture en rupture fragile et en effondrement plastique par la distribution par la distribution des contraintes sur le ligament non fissuré lorsque varie le module d'adoucissement. On trouve que la contrainte à l'extrémité de la fissure est nulle est nulle au début de l'instabilité de la rupture. La charge maximum et la charge à la rupture sont trouvées différentes, et on obtient une valeur unique de la charge à la rupture. On montre que la longueur de la zone concernée par le processus de rupture d'pend de la valeur du module d'adoucissement. On calcule également les limites théoriques de longueur de cette zone. Divers paramètres de rupture non linéaire sont calculés pour une large gamme d'éprouvettes en poutres reprises dans la littérature; on trouve qu'il existe une bonne concordance avec les résultats expérimentaux et théoriques. On démontre qu'en suivant une procédure simple on peut obtenir avec une bonne précision la courbe reliant les portions avant et après le pic de sollicitation en fonction du COD de la fissure. En outre, on développe une procédure simple pour calculer la charge maximum. Les valeurs prédites sont en bon accord avec les valeurs expérimentales. Le modèle SBM proposé est très simple et est basé sur des considérations rationnelles. Il est susceptible de décrire complètement le processus de rupture depuis le début de la formation de la zone intéressée jusqu'à l'amorçage de la rupture instable.