159 resultados para film documentaire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the ultrasonic strain sensing performance of the large area PVDF thin film subjected to the thermal fatigue is studied. The PVDF thin film is prepared using hot press and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The sensors used in aircrafts for structural health monitoring applications are likely to be subjected to a wide range of temperature fluctuations which may create thermal fatigue in both aircraft structures and in the sensors. Thus, the sensitivity of the PVDF sensors for thermal fatigue needs to be studied for its effective implementation in the structural health monitoring applications. In present work, the fabricated films have been subjected to certain number of thermal cycles which serve as thermal fatigue and are further tested for ultrasonic strain sensitivity at various different frequencies. The PVDF sensor is bonded on the beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end of the beam. Sensitivity of PVDF sensor in terms of voltage is obtained for increasing number of thermal cycles. Sensitivity variation is studied at various different extent of thermal fatigue. The variation of the sensor sensitivity with frequency due to thermal fatigue at different temperatures is also investigated. The present investigation shows an appropriate temperature range for the application of the PVDF sensors in structural health monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6x10(19) cm(-3) and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10(-7)A/cm(2) K-2 than the theoretical value (32 A/cm(2) K-2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of sigma(2)=0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm(2) K-2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the after shock heated structural and morphological studies of chromium film coated on hypersonic test model as a passive drag reduction element. The structural changes and the composition of phases of chromium due to shock heating (2850 K) are characterized using X-ray diffraction studies. Surface morphology changes of chromium coating have been studied using scanning electron microscopy (SEM) before and after shock heating. Significant amount of chromium ablation and sublimation from the model surface is noticed from SEM micrographs. Traces of randomly oriented chromium oxides formed along the coated surface confirm surface reaction of chromium with oxygen present behind the shock. Large traces of amorphous chromium oxide phases are also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermally evaporated amorphous Sb40Se20S40 thin film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra supports the optical changes happening in the film due to light exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflectance change due to binding of molecules on thin film structures has been exploited for bio-molecular sensing by several groups due to its potential in the development of sensitive, low cost, easy to fabricate, large area sensors with high multiplexing capabilities. However, all of these sensing platforms have been developed using traditional semiconductor materials and processing techniques, which are expensive. This article presents a method to fabricate disposable thin film reflectance biosensors using polymers, such as polycarbonate, which are 2-3 orders of magnitude cheaper than conventional semiconductor and dielectric materials and can be processed by alternate low cost methods, leading to significant reduction in consumable costs associated with diagnostic biosensing. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 degrees C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be similar to 0.5 eV and similar to 1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 degrees C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ge2Sb2Te5 (GST) films, one of the most suitable Chalcogenide alloys for Phase change Random Access Memory applications are studied for changes in sheet resistance, optical transmission, morphology and surface science by annealing at various transition temperatures. The crystallization leads to an increase of grain size and roughness in the films and the resistance changes to three orders of magnitude. Optical studies on GST films show distinct changes during phase transitions and the optical parameters are calculated. An increase of Tauc parameters B-1/2 indicates a reduction in disorder during phase transition. It is confirmed from XPS studies that Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases whereas Sb-Ge, Te-Te, Sb-Sb bonds are absent. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field emission of reduced graphene oxide coated on polystyrene film is studied in both parallel and perpendicular configurations. Low turn-on field of 0.6 V/lm and high emission current density of 200 mA/cm(2) are observed in perpendicular configuration (along the cross section), whereas a turn-on field of 6 V/lm and current density of 20 mu A/cm(2) are obtained in parallel configuration (top surface). The emission characteristics follow Fowler-Nordheim (FN) tunneling and the values of enhancement factor estimated from FN plots are 5818 (perpendicular) and 741 (parallel). Furthermore, stability and repeatability of the field emission characteristics in perpendicular configuration are presented. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4788738]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Bi layer (thickness similar to 7 nm) on As2S3 film was extensively studied for different optical applications in which Bi (top layer) as active and diffusing layer and As2S3 as barrier (matrix) layer. Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. The decrease of optical band gap with the addition of Bi to As2S3 has been explained on the basis of density of states and the increase in disorder in the system. It was found that the efficient changes of optical parameters (transmission, optical band gap, refraction) could be realized due to the photo induced diffusion activated by the focused 532 nm laser irradiation and formation of different bonds. The diffusion of Bi into As2S3 matrix increases the optical band gap producing photo bleaching effect. The changes were characterised by different experimental techniques. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the application aspect of piezoelectric ZnO thin film deposited on flexible phynox alloy substrate. Highly crystalline piezoelectric ZnO thin films were deposited by RF reactive magnetron sputtering and were characterized by XRD, SEM, AFM analysis. Also, the effective d(33) coefficient value measurement was performed. The actuator element is a circular diaphragm of phynox alloy on to which piezoelectric ZnO thin film was deposited. ZnO film deposited actuator element was firmly fixed inside a suitable concave perspex mounting designed specifically for micro actuation purpose. The actuator element was excited at different frequencies for the supply voltages of 2V, 5V and 8V. Maximum deflection of the ZnO film deposited diaphragm was measured to be 1.25 mu m at 100 Hz for the supply voltage of 8V. The developed micro actuator has the potential to be used as a micro pump for pumping nano liters to micro liters of fluids per minute for numerous biomedical and aerospace applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.