309 resultados para field-induced phase transition
Resumo:
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150 degrees C and then to a stable hexagonal structure at high temperatures (>= 250 degrees C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)(1-x)Se-x thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150 degrees C. The intermediate NaCl structure has been observed only for x, 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)(1-x)Se-x films are better candidates for phase change memory applications.
Resumo:
In this study, a unique method was adopted to design porous membranes through crystallization induced phase separation in PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends. By etching out PMMA, which segregates either in the interlamellar and/or in the interspherulitic regions of the blends, nanoporous hierarchical structures can be derived. Different nanoparticles like titanium dioxide (TiO2), silver nanoparticle (Ag) decorated carbon nanotubes (Ag-CNTs), TiO2 decorated CNTs (TiO2-CNTs), Ag decorated TiO2 (Ag-TiO2) and Ag-TiO2 decorated CNTs (Ag@TiO2-CNTs) were synthesized and melt mixed with 80/20 PVDF/PMMA blends to render antibacterial activity to the membranes. Scanning electron microscopy (SEM) was used to study the crystalline morphology of the membranes. A significant improvement in the trans-membrane flux was obtained in the blends with Ag@TiO2 decorated CNTs as compared to the membranes derived from the neat blends, which can be attributed to the interconnected pores in these membranes. Both qualitative and quantitative studies of antifouling and antibacterial activity (using E. coli as a model bacterium) were performed using the standard plate count method. SEM micrographs clearly showed that the antifouling activity of the membranes was improved with addition of Ag@TiO2-CNTs. In the quantitative standard plate count method, the bacterial colony significantly decreased with the addition of Ag@TiO2-CNTs as against neat blends. This study opens a new avenue in the fabrication of polymer blend based membranes for water filtration.
Resumo:
The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
There is great interest in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O-3 (15/10BCTZ) because of its exceptionally large piezoelectric response Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009)]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature-and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P4mm)+ orthorhombic (Amm2) + rhombohedral (R3m). We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.
Resumo:
We report the development of porous membranes by thermally induced phase separation of a PS/PVME (polystyrene/polyvinylmethyl ether]) blend, which is a typical LCST mixture. The morphology of the membrane after etching out the PVME phase was characterized by scanning electron microscopy. To give the membrane an antibacterial surface, polystyrene (PS) and polyvinyl(methyl ether)]-alt-maleic anhydride (PVME-MAH) with silver nanoparticles (nAg) were electrospun on the membrane surface. Pure water flux was evaluated by using a cross-flow membrane setup. The microgrooved fibers changed the flux across the membrane depending on the surface properties. The antibacterial properties of the membrane were confirmed by the reduction in the colony count of E. coli. The SEM images show the disruption of the bacterial cell membrane and the antibacterial mechanism was discussed.
Resumo:
We have investigated the multiferroic and glassy behaviour of metal-organic framework (MOF) material (CH3)(2)NH2Co(CHOO)(3). The compound has perovskite-like architecture in which the metal-formate forms a framework. The organic cation (CH3)(2)NH2+ occupies the cavities in the formate framework in the framework via N-H center dot center dot center dot O hydrogen bonds. At room temperature, the organic cation is disordered and occupies three crystallographically equivalent positions. Upon cooling, the organic cation is ordered which leads to a structural phase transition at 155 K. The structural phase transition is associated with a para-ferroelectric phase transition and is revealed by dielectric and pyroelectric measurements. Further, a PE hysteresis loop below 155 K confirms the ferroelectric behaviour of the material. Analysis of dielectric data reveal large frequency dispersion in the values of dielectric constant and tan delta which signifies the presence of glassy dielectric behaviour. The material displays a antiferromagnetic ordering below 15 K which is attributed to the super-exchange interaction between Co2+ ions mediated via formate linkers. Interestingly, another magnetic transition is also found around 11 K. The peak of the transition shifts to lower temperature with increasing frequency, suggesting glassy magnetism in the sample. (C) 2016 AIP Publishing LLC.
Resumo:
The effect of high hydrostatic pressure up to 1.5 GPa on ionic motion in (NH4)4Fe(CN)6.1.5H2O has been studied by wide-line 1H NMR experiments performed in the temperature range from room temperature to 77 K. The experiments at room temperature have shown a large increase in the second moment at 0.45 GPa as a result of a pressure-induced phase transition. The temperature dependence study up to 0.425 GPa has shown a gradual increase in the values of activation energy and attempt frequency with increase in pressure. The activation volume for motion at 300 K has been estimated to be 6% of molar volume. Vacancy-assisted ionic jumps are concluded to be the mode of charge transport. Second moments estimated at 77 K show evidence for tunnelling reorientation of at least one of the two NH4+ groups in the compound.
Resumo:
The mechanism of field induced phase switching in antiferroelectric lead zirconate and La-modified lead zirconate thin films has been analysed in terms of reversible and irreversible switching process under weak fields as a function of donor concentration. Extension of Rayleigh law of ferromagnetic materials to the present antiferroelectric and modified antiferroelectric compositions have clearly showed that origin of small signal dielectric permittivity is due to reversible domain wall motion. Rayleigh's constant, a measure of irreversible switching process, exhibited a slight increase with lower La3+ concentrations and followed by a gradual fall for higher concentration. This clearly illustrates that donor addition to antiferroelectric thin films controls the domain switching even under weak fields. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The electrical resistivity of layerd crystalline GeSe has been investigated up to a pressure of 100 kbar and down to liquid-nitrogen temperature by use of a Bridgman anvil device. A pressure-induced first-order phase transition has been observed in single-crystal GeSe near 6 GPa. The high-pressure phase is found to be quenchable and an x-ray diffraction study of the quenched material reveals that it has the face-centered-cubic structure. Resistivity measurements as a function of pressure and temperature suggest that the high-pressure phase is metallic.
Resumo:
We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.
Resumo:
Antiferroelectric materials (example: lead zirconate and modified lead zirconate stannate), in which a field-induced ferroelectric phase transition is feasible due to a small free energy difference between the ferroelectric and the antiferroelectric phases, are proven to be very good candidates for applications involving actuation and high charge storage devices. The property of reverse switching from the field-induced ferroelectric to antiferroelectric phases is studied as a function of temperature, applied electric field, and sample thickness in antiferroelectric lead zirconate thin films deposited by pulsed excimer laser ablation. The maximum released charge density was 22 μC/cm2 from a stored charge density of 36 μC/cm2 in a 0.55 μ thick lead zirconate thin film. This indicated that more than 60% of the stored charge could be released in less than 7 ns at room temperature for a field of 200 kV/cm. The content of net released charge was found to increase with increasing field strength, whereas with increasing temperature the released charge was found to decrease. Thickness-dependent studies on lead zirconate thin films showed that size effects relating to extrinsic and intrinsic pinning mechanisms controlled the released and induced charges through the intrinsic switching time. These results proved that antiferroelectric PZ thin films could be utilized in high-speed charge decoupling capacitors in microelectronics applications.
Pressure-Induced Bond Rearrangement and Reversible Phase Transformation in a Metal-Organic Framework
Resumo:
Pressure-induced phase transformations (PIPTs) occur in a wide range of materials. In general, the bonding characteristics, before and after the PIPT, remain invariant in most materials, and the bond rearrangement is usually irreversible due to the strain induced under pressure. A reversible PIPT associated with a substantial bond rearrangement has been found in a metal-organic framework material, namely tmenH(2)]Er(HCOO)(4)](2) (tmenH(2)(2+) = N,N,N',N'-tetramethylethylenediammonium). The transition is first-order and is accompanied by a unit cell volume change of about 10%. High-pressure single-crystal X-ray diffraction studies reveal the complex bond rearrangement through the transition. The reversible nature of the transition is confirmed by means of independent nanoindentation measurements on single crystals.
Resumo:
Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at similar to 19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressure-tuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.
Resumo:
A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
Resumo:
We report high-pressure Raman-scattering studies on single-crystal ReO3 up to 26.9 GPa at room temperature, complemented by first-principles density functional calculations to assign the modes and to develop understanding of the subtle features of the low-pressure phase transition. The pressure (P) dependence of phonon frequencies (omega) reveals three phase transitions at 0.6, 3, and 12.5 GPa with characteristic splitting and changes in the slope of omega(P). Our first-principles theoretical analysis confirms the role of the rotational modes of ReO6, M-3, to the lowest pressure structural transition, and shows that the transition from the Pm3m to the Im3 structure is a weak first-order transition, originating from the strong anharmonic coupling of the M-3 modes with the acoustic modes (strain).