258 resultados para ddc:400


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G(7)) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of similar to1.5 Angstrom from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400 K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as rhick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic (Sr-87/Sr-86) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the Sr-87/Sr-86 signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the (U-234/U-238) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (U-234/U-238) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 +/- 0.84 kyr to 7.5 +/- 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance and usefulness of local doublet parameters in understanding sequence dependent effects has been described for A- and B-DNA oligonucleotide crystal structures. Each of the two sets of local parameters described by us in the NUPARM algorithm, namely the local doublet parameters, calculated with reference to the mean z-axis, and the local helical parameters, calculated with reference to the local helix axis, is sufficient to describe the oligonucleotide structures, with the local helical parameters giving a slightly magnified picture of the variations in the structures. The values of local doublet parameters calculated by NUPARM algorithm are similar to those calculated by NEWHELIX90 program, only if the oligonucleotide fragment is not too distorted. The mean values obtained using all the available data for B-DNA crystals are not significantly different from those obtained when a limited data set is used, consisting only of structures with a data resolution of better than 2.4 A and without any bound drug molecule. Thus the variation observed in the oligonucleotide crystals appears to be independent of the quality of their crystallinity. No strong correlation is seen between any pair of local doublet parameters but the local helical parameters are interrelated by geometric relationships. An interesting feature that emerges from this analysis is that the local rise along the z-axis is highly correlated with the difference in the buckle values of the two basepairs in the doublet, as suggested earlier for the dodecamer structures (Bansal and Bhattacharyya, in Structure & Methods: DNA & RNA, Vol. 3 (Eds., R.H. Sarma and M.H. Sarma), pp. 139-153 (1990)). In fact the local rise values become almost constant for both A- and B-forms, if a correction is applied for the buckling of the basepairs. In B-DNA the AA, AT, TA and GA basepair sequences generally have a smaller local rise (3.25 A) compared to the other sequences (3.4 A) and this seems to be an intrinsic feature of basepair stacking interaction and not related to any other local doublet parameter. The roll angles in B-DNA oligonucleotides have small values (less than +/- 8 degrees), while mean local twist varies from 24 degrees to 45 degrees. The CA/TG doublet sequences show two types of preferred geometries, one with positive roll, small positive slide and reduced twist and another with negative roll, large positive slide and increased twist.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of applied DC potentials on the activity and growth of Thiobacillus ferrooxidans, as well as on the dissolution behaviour of some base metal sulphides is discussed with reference to bioleaching. Selective bioleaching of zinc from sphalerite could be achieved under an applied potential of −500 mV (saturated calomel electrode) from binary mineral mixtures containing the zinc mineral and chalcopyrite or pyrite. On the other hand, bioleaching of pyrite and chalcopyrite was found to be enhanced under positive potentials of +400 mV and +600 mV, respectively. Probable mechanisms in the electrobioleaching of sulphides are examined with respect to galvanic, microbiological and applied potential effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of crystalline, monophasic indium selenide (InSe) thin solid films by elemental evaporation on hot glass substrates (400 to 530 K) is reported. The compound formation as well as the composition of the formed films are confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The crystallinity of the rhombohedral InSe films can be improved by post-depositional annealing for t < 30 min at 533 K. The InSe thin films become Se-deficient at higher temperatures of deposition or longer duration of annealing. Optical studies reveal the bandgap to be around 1.29 eV. Under optimum conditions of preparations the lowest resistivity of ≈ 12.8 Ω cm is obtained. Durch Verdampfen aus den Elementen auf heiße Glassubstrate (400 bis 530 k) werden dünne, kristalline, einphasige Indiumselenid (InSe)-Festkörperschichten gebildet. Sowohl die Bildung der Verbindung als auch die Zusammensetzung der Schichten werden durch Röntgen-Photoelektronenspektroskopie (XPS) untersucht. Die Kristallinität der rhomboedrischen InSe-Schichten kann durch eine Temperung bei 533 K für t < 30 min nach der Abscheidung verbessert werden. Die dünnen InSe-Schichten zeigen nach Abscheidung bei höheren Temperaturen oder längerer Temperungsdauer einen Se-Unterschuß. Optische Untersuchungen ergeben, daß die Bandlücke bei etwa 1,29 eV liegt. Unter optimalen Präperationsbedingungen wird ein niedrigster Widerstand von ≈ 12.8 Ω cm erreicht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation. NiTi films were deposited at two substrate temperatures viz. 300 and 400 degrees C. NiTi films deposited at 300 degrees C were annealed for 4 h at four different temperatures, i.e. 300, 400, 500 and 600 degrees C whereas films deposited at 400 degrees C were annealed for 4 h at three different temperatures, i.e. 400, 500 and 600 degrees C. The elastic modulus and hardness of the films were found to be the same in the as-deposited as well as annealed conditions for both substrate temperatures. For a given substrate temperature, the hardness and elastic modulus were found to remain unchanged as long as the films were amorphous. However, both elastic modulus and hardness showed an increase with increasing annealing temperature as the films become crystalline. The results were explained on the basis of the change in microstructure of the film with change in annealing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cylindrical specimens of commercial pure titanium have been compressed at strain rates in the range of 0.1 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates of 10 and 100 s-1, the specimens exhibited adiabatic shear bands. At lower strain rates, the material deformed in an inhomogeneous fashion. These material-related instabilities are examined in the light of the ''phenomenological model'' and the ''dynamic materials mode.'' It is found that the regime of adiabatic shear band formation is predicted by the phenomenological model, while the dynamic materials model is able to predict the inhomogeneous deformation zone. The criterion based on power partitioning is competent to predict the variations within the inhomogeneous deformation zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface tensions of binary mixtures of 1-alkanols (Cl-Cd with benzene, toluene, or xylene were measured. The results were correlated with the activity coefficients calculated through the group contribution method such as UNIFAC, with the maximum deviation from the experimental results less that 5%. The coefficients of the correlation are correlated with the chain length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine particle AlPO4, LaPO4 and KTiOPO4 have been prepared by the flash combustion of aqueous solutions containing metal nitrate, ammonium hydrogen phosphate, ammonium nitrate or ammonium perchlorate and carbohydrazide or tetraformal trisazine. When rapidly heated at 400 °C, the solution containing the redox mixtures ignites to undergo self-propagating, gas-producing, exothermic reactions. Formation of crystalline phosphates was confirmed by powder X-ray diffraction patterns and IR spectra. The metal phosphates formed are fine and have 20�78 m2 g?1 surface area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hydrothermal reaction of Mn(OAc)(2)center dot 4H(2)O, Co(OAc)(2)center dot 4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 degrees C for 24 h gives rise to a mixed metal MOF compound, CoMn2(C6H3(COO)(3))(2)], I. The structure is formed by the connectivity between octahedral CoO6 and trigonal prism MnO6 units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M2+ ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn2O4, with particle sizes in the nano regime at 400 degrees C. The particle size of the CoMn2O4 can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn2O4 compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 degrees C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm(-1) (C-N stretching) and 1600 cm(-1) (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm(-1) and 1576 cm(-1) respectively. XPS core level spectra of C 1s and N 1s show the formation of pi bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is similar to 100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd