147 resultados para cis-4-decenoic acid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CsHaN205, PL a = 6.438 (2), b = 7.486 (3), c = 8.048 (4)A, a = 72.2(1), fl = 80.8(1), y = 76.4 (1) °, D m = 1.65 (1) (flotation), D c = 1.64 Mg m -3, Z = 2. Final R = 0.095 for 1205 observed reflections. The molecule assumes the sterically least favourable conformation with the side chain carboxyl group staggered between the a-carboxyl group and the N atom attached to C '~. The ureido group takes part in two specific interactions involving two nearly parallel hydrogen bonds in one and two convergent hydrogen bonds in the other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvolysis of nine representative half ester acid chlorides in aqueous acetone have been studied. Isomers solvolyse at distinctly different rates and furnish the original acids. Contrary to the well accepted views, no evidence for tautomerism or isomerism between the isomeric pairs of acid chlorides could be detected. In a number of cases alkoxy group participates in the solvolysis of neighbouring acid chlorides. This results in (a) rate enhancement and (b) partial or total shift of the reaction pattern from SN2 to SN1. Isomeric half ester acid chlorides, in the presence of a sufficiently strong Lewis acid, could give the same oxonium salt. Rearrangements observed in the reactions of unsymmetrical 1,2- and 1,3-dicarboxylic acid derivatives could be ascribed to the prior formation of common oxonium salt intermediates in the presence of Lewis acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetone powders prepared from leaf extracts of Tecoma stans L. were found to catalyze the oxidation of catechol to 3,4,3',4'-tetrahydroxydiphenyl. Fractionation of the acetone powders obtained from Tecoma leaves with acetone, negative adsorption of the acetone fraction with tricalcium phosphate gel, and chromatography of the gel supernatant on DEAE-Sephadex yielded a 68-fold purified enzyme with 66% recovery. The enzyme had an optimum pH around 7.2. It showed a temperature optimum of 30° and the Km for catechol was determined as 2 x 10-4 m. The purified enzyme moved as a single band on polyacrylamide gel electrophoresis. Its activity was found to be partially stimulated by Mg2+. The reaction was not inhibited by o-phenanthroline and agr,agr'-dipyridyl. The purified enzyme was highly insensitive to a range of copper-chelating agents. It was not affected appreciably by thiol inhibitors. The reaction was found to be suppressed to a considerable extent by reducing agents like GSH, cysteine, cysteamine, and ascorbic acid. The purified enzyme was remarkably specific for catechol. Catalase affected neither the enzyme activity nor the time course of the reaction. Hydrogen peroxide was not formed as a product of the reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retinylidene Schiff base derivative of seven lysine containing peptides have been prepared in order to investigate solvent and neighboring group effects, on the absorption maximum of the protonated Schiff base chromophore. The peptides studied are Boc-Aib-Lys-Aib-OMe (1), Boc-Ala-Aib-Lys-OMe (2), Boc-Ala-Aib-Lys-Aib-OMe (3), Boc-Aib-Asp-Aib-Aib-Lys-Aib-OMe (4), Boc-Aib-Asp-Aib-Ala-Aib-Lys-Aib-OMe (5), Boc-Lys-Val-Gly-Phe-OMe (6) and Boc-Ser-Ala-Lys-Val-Gly-Phe-OMe (7). In all cases protonation shifts the absorption maxima to the red by 3150–8450 cm-1. For peptides 1–3 the protonation shifts are significantly larger in nonhydrogen bonding solvents like CHCl3 or CH2Cl2 as compared to hydrogen bonding solvents like CH3OH. The presence of a proximal Asp residue in 4 and 5 results in pronounced blue shift of the absorption maximum of the protonated Schiff base in CHCl3, relative to peptides lacking this residue. Peptides 6 and 7 represent small segments of the bacteriorhodopsin sequence in the vicinity of Lys-216. The presence of Ser reduces the magnitude of the protonation shift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C 15H 1602 (a synthetic precursor to dodecahedrane), monoclinic, P21/n, a = 12.171 (5), b = 6.976(5), c = 13.868 (3) A, B = 102.56 (3) ° , Z = 4, D m = 1.30, D c = 1.318 g cm -3, F(000) = 488, g(Mo K¢t) = 0.92 cm- 1. Intensity data were collected on a Nonius CAD-4 diffractometer and the structure was solved by direct methods. Full-matrix least-squares refinement gave R = 0.077 (R w = 0.076) for 1337 observed reflections. All the five-membered rings are cis fused and have envelope (C s symmetry) conformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diluents (either low molecular weight compounds orother polymers) are known to modify the morphology, the rates of nucleation and growth of polymers 1- 4. Recentlybinary systems in which both the components crystallize simultaneously to give a eutectic solid have been studied with great interest. Carbonnei et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meclofenamic acid, C I4HIICI2NO2, probably the most potent among analgesic fenamates, crystallizes in the triclinic space group P1, with a = 8.569 (5), b = 8.954(8), c -- 9.371 (4) A, ct = 103.0 (2), fl -- 103.5 (2), y = 92.4 (2) ° , Z = 2, D m = 1.43 (4), D c = 1.41 Mg m -3. The structure was solved by direct methods and refined to R = 0.135 for 1062 observed reflections. The anthranilic acid moiety in the molecule is nearly planar and is nearly perpendicular to the 2,6-dichloro-3-methylphenyl group. The molecules, which exist as hydrogen-bonded dimers, have an internal hydrogen bond involving the imino and the carboxyl groups. The methyl group is disordered and occupies two positions with unequal occupancies. The disorder can be satisfactorily explained in terms of the rotational isomerism of the 2,6-dichloro-3-methylphenyl group about the bond which connects it to the anthranilic acid moiety and the observed occupancies on the basis of packing considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of 4,4,N,N-tetramethyl-NN-dinitroso-2,2-methylenedianiline (1) by the route p-MeC6H4NH2+ HCHO + OH–(p-MeC6H4NMe)2CH2(7b); (7b)+ acid at 70 °C 4,N-dimethyl-6-(N-methyl-p-toluidinomethyl)aniline (4b); (4b)+ acid at 130 °C 4,4,NN-tetramethyl-2,2-methylenedianiline (3b); (3b)+ HNO2(1), is described. Aspects of the 1H n.m.r. spectra of the above and related compounds are discussed. A crystal-structure analysis of compound (1) shows one of the N-nitroso-groups to be disordered with the endo-form being in preponderance (4 : 1) over the exo-form. The other N-nitroso-group is exclusively exo in the solid state. There is little or no resonance between the benzene ring and the nitroso-group attached to the ring, the two groups being almost perpendicular to each other. In one of the N-nitroso-groups, the nitrogen atom deviates significantly from the plane of the benzene ring to which it is attached. Both amide nitrogen atoms show some pyramidal character.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide,three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAESephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNAL'y and a minor, tRNA'Ys. Co-chromatography of 14C-labelled tRNALYS and 3H-labelled tRNALy, on benzoylated DEAE-cellulose at pH4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,Gl) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzoate-4-hydroxylase from a soil pseudomonad was isolated and purified about 50-fold. Polyacrylamide gel electrophoresis of this enzyme preparation showed one major band and one minor band. The approximate molecular weight of the enzyme was found to be 120,000. Benzoate-4-hydroxylase was most active around pH 7.2. The enzyme showed requirements for tetrahydropteridine as the cofactor and molecular oxygen as the electron acceptor. NADPH, NADH, dithiothreitol, β-mercaptoethanol, and ascorbic acid when added alone to the reaction mixture did not support the hydroxylation reaction to any significant extent. However, when these compounds were added together with tetrahydropteridine, they stimulated the hydroxylation. This stimulation is probably due to the reduction of the oxidized pteridine back to the reduced form. This enzyme was activated by Fe2+ and benzoate. It was observed that benzoate-4-hydroxylase could catalyze the oxidation of NADPH in the presence of benzoate,p-aminobenzoate, p-nitrobenzoate, p-chlorobenzoate, and p-methylbenzoate, with only benzoate showing maximum hydroxylation. Inhibition studies with substrate analogs and their kinetic analysis revealed that the carboxyl group is involved in binding the substrate to the enzyme at the active center. The enzyme catalyzed the conversion of 1 mol of benzoate to 1 mol of p-hydroxybenzoate with the consumption of slightly more than 1 mol of NADPH and oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

allo-4-Hydroxy-L-proline crystallizes from an aqueous solution as the dihydrate. The crystals are orthorhombic, space group P212121, with a=7.08 (2), b=22.13 (3), c= 5"20 (2) A,. The structure was solved by direct methods and refined by block-diagonal least squares. The final R for 733 observed reflexions is 0.054. The molecule exists as a zwitterion with hydroxyl and carboxyl groups cis to the pyrrolidine ring. The latter is puckered at the fl-carbon atom, which deviates by -0.54 A, from the best plane formed by the four remaining atoms. The molecules are held together by a network of hydrogen bonds, the water molecules playing a dominant role in the stability of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

THE unusual amino acid beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (ODAP), isolated from the seeds of Lathyrus sativus is a potent neurotoxin1−3. It produces biochemical changes in the brain typical of an excitant amino acid and is implicated in the aetiology of human neurolathyrism caused by eating the seeds of L. sativus 4−6. It may act as a glutamate antagonist: ODAP inhibits glutamate oxidation7 possibly by inhibiting glutamate uptake in bovine brain mitochondria; it also acts as a competitive inhibitor of glutamate uptake in certain strains of yeast8, and a similar process might occur at the synaptic level. Any effect of ODAP on glutamate uptake at synapses is significant in view of the neurotransmitter function of glutamate, which seems to be neuroexcitory as well as neurotoxic9−12. But Balcar and Johnston13 have shown with rat brain slices that ODAP does not inhibit the glutamate uptake by the high affinity system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.