122 resultados para boundary integral method
Resumo:
The effect of large mass injection on the following three-dimensional laminar compressible boundary-layer flows is investigated by employing the method of matched asymptotic expansions: (i) swirling flow in a laminar compressible boundary layer over an axisymmetric surface with variable cross-section and (ii) laminar compressible boundary-layer flow over a yawed infinite wing in a hypersonic flow. The resulting equations are solved numerically by combining the finite-difference technique with quasi-linearization. An increase in the swirl parameter, the yaw angle or the wall temperature is found to be capable of bringing the viscous layer nearer the surface and reducing the effects of massive blowing.
Resumo:
We consider here the higher order effect of moderate longitudinal surface curvature on steady, two-dimensional, incompressible laminar boundary layers. The basic partial differential equations for the problem, derived by the method of matched asymptotic expansions, are found to possess similarity solutions for a family of surface curvatures and pressure gradients. The similarity equations obtained by this anaylsis have been solved numerically on a computer, and show a definite decrease in skin friction when the surface has convex curvature in all cases including zero pressure gradient. Typical velocity profiles and some relevant boundary-layer characteristics are tabulated, and a critical comparison with previous work is given.
Resumo:
A constant-pressure axisymmetric turbulent boundary layer along a circular cylinder of radius a is studied at large values of the frictional Reynolds number a+ (based upon a) with the boundary-layer thickness δ of order a. Using the equations of mean motion and the method of matched asymptotic expansions, it is shown that the flow can be described by the same two limit processes (inner and outer) as are used in two-dimensional flow. The condition that the two expansions match requires the existence, at the lowest order, of a log region in the usual two-dimensional co-ordinates (u+, y+). Examination of available experimental data shows that substantial log regions do in fact exist but that the intercept is possibly not a universal constant. Similarly, the solution in the outer layer leads to a defect law of the same form as in two-dimensional flow; experiment shows that the intercept in the defect law depends on δ/a. It is concluded that, except in those extreme situations where a+ is small (in which case the boundary layer may not anyway be in a fully developed turbulent state), the simplest analysis of axisymmetric flow will be to use the two-dimensional laws with parameters that now depend on a+ or δ/a as appropriate.
Effects of phase inhomogeneity and boundary conditions on the dynamic response of SMA wire actuators
Resumo:
This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.
Resumo:
The primary objective of the paper is to make use of statistical digital human model to better understand the nature of reach probability of points in the taskspace. The concept of task-dependent boundary manikin is introduced to geometrically characterize the extreme individuals in the given population who would accomplish the task. For a given point of interest and task, the map of the acceptable variation in anthropometric parameters is superimposed with the distribution of the same parameters in the given population to identify the extreme individuals. To illustrate the concept, the task space mapping is done for the reach probability of human arms. Unlike the boundary manikins, who are completely defined by the population, the dimensions of these manikins will vary with task, say, a point to be reached, as in the present case. Hence they are referred to here as the task-dependent boundary manikins. Simulations with these manikins would help designers to visualize how differently the extreme individuals would perform the task. Reach probability at the points in a 3D grid in the operational space is computed; for objects overlaid in this grid, approximate probabilities are derived from the grid for rendering them with colors indicating the reach probability. The method may also help in providing a rational basis for selection of personnel for a given task.
Resumo:
We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America
Resumo:
The commercial automotive mufflers are generally of a complicated shape with multiply connected parts and complex acoustic elements. The analysis of such complex mufflers has always been a great challenge. In this paper, an Integrated Transfer Matrix method has been developed to analyze complex mufflers. Integrated transfer matrix relates the state variables across the entire cross-section of the muffler shell, as one moves along the axis of the muffler, and can be partitioned appropriately in order to relate the state variables of different tubes constituting the cross-section. The paper presents a generalized one-dimensional (1-D) approach, using the transfer matrices of simple acoustic elements, which are available from the literature. The present approach is robust and flexible owing to its capability to construct an overall matrix of the muffler with the transfer matrices of individual acoustic elements and boundary conditions, which can then be used to evaluate the transmission loss, insertion loss, etc. Results from the present approach have been validated through comparisons with the available experimental and three-dimensional finite element method (FEM) based results. The results show good agreement with both measurements and FEM analysis up to the cut-off frequency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we investigate a numerical method for the solution of an inverse problem of recovering lacking data on some part of the boundary of a domain from the Cauchy data on other part for a variable coefficient elliptic Cauchy problem. In the process, the Cauchy problem is transformed into the problem of solving a compact linear operator equation. As a remedy to the ill-posedness of the problem, we use a projection method which allows regularization solely by discretization. The discretization level plays the role of regularization parameter in the case of projection method. The balancing principle is used for the choice of an appropriate discretization level. Several numerical examples show that the method produces a stable good approximate solution.
Resumo:
The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to constrain the form factor at points inside the analyticity domain and its shape parameters, and also to isolate domains on the real axis and in the complex energy plane where zeros are excluded. In this lecture note, we review the mathematical techniques of this formalism in its standard form, known as the method of unitarity bounds, and recent developments which allow us to include information on the phase and modulus along a part of the unitarity cut. We also provide a brief summary of some results that we have obtained in the recent past, which demonstrate the usefulness of the method for precision predictions on the form factors.
Resumo:
We consider an inverse elasticity problem in which forces and displacements are known on the boundary and the material property distribution inside the body is to be found. In other words, we need to estimate the distribution of constitutive properties using the finite boundary data sets. Uniqueness of the solution to this problem is proved in the literature only under certain assumptions for a given complete Dirichlet-to-Neumann map. Another complication in the numerical solution of this problem is that the number of boundary data sets needed to establish uniqueness is not known even under the restricted cases where uniqueness is proved theoretically. In this paper, we present a numerical technique that can assess the sufficiency of given boundary data sets by computing the rank of a sensitivity matrix that arises in the Gauss-Newton method used to solve the problem. Numerical experiments are presented to illustrate the method.
Resumo:
Levy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases. DOI: 10.1103/PhysRevE.86.061105
Resumo:
Surface electrodes are essentially required to be switched for boundary data collection in electrical impedance tomography (Ell). Parallel digital data bits are required to operate the multiplexers used, generally, for electrode switching in ELT. More the electrodes in an EIT system more the digital data bits are needed. For a sixteen electrode system. 16 parallel digital data bits are required to operate the multiplexers in opposite or neighbouring current injection method. In this paper a common ground current injection is proposed for EIT and the resistivity imaging is studied. Common ground method needs only two analog multiplexers each of which need only 4 digital data bits and hence only 8 digital bits are required to switch the 16 surface electrodes. Results show that the USB based data acquisition system sequentially generate digital data required for multiplexers operating in common ground current injection method. The profile of the boundary data collected from practical phantom show that the multiplexers are operating in the required sequence in common ground current injection protocol. The voltage peaks obtained for all the inhomogeneity configurations are found at the accurate positions in the boundary data matrix which proved the sequential operation of multiplexers. Resistivity images reconstructed from the boundary data collected from the practical phantom with different configurations also show that the entire digital data generation module is functioning properly. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn indicates a sequential and proper operation of multiplexers.
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.
Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary
Resumo:
In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.
Resumo:
Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.