182 resultados para aluminum dross
Resumo:
The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.
Resumo:
The structure, bonding and energetics of B2AlHnm (n = 3−6, m = −2 to +1) are compared with corresponding homocyclic boron, aluminum analogues and BAl2Hnm using density functional theory (DFT). Divalent to hexacoordinated boron and aluminum atoms are found in these species. The geometrical and bonding pattern in B2AlH4− is similar to that for B2SiH4. Species with lone pairs on the divalent boron and aluminum atoms are found to be minima on the potential energy surface of B2AlH32−. A dramatic structural diversity is observed in going from B3Hnm to B2AlHnm, BAl2Hnm and Al3Hnm and this is attributable to the preference of lower coordination on aluminum, higher coordination on boron and the higher multicenter bonding capability of boron. The most stable structures of B3H6+, B2AlH5 and BAl2H4− and the trihydrogen bridged structure of Al3H32− show an isostructural relationship, indicating the isolobal analogy between trivalent boron and divalent aluminum anion.
Resumo:
The tie-lines representing the inter-crystalline ion exchange equilibria between the NiCr2O4-NiAl2O4 spinet solid solution and Cr2O3-Al2O3 corundum solid solution are determined by electron microprobe andEDAX pointcountanalysis of the oxide phases equilibrated with metallic Ni at 1373 K. The component activities in the spinet solid solution are derived from the tie-lines and thermodynamic data for Cr2O3-Al2O3 solid solution available in the literature. The Gibbs energy of mixing of the spinet solid solution calculated from the experimental data is discussed in relation to the values derived from the cation distribution models which assume random mixing of cations on both tetrahedral and octahedral sites. Positive deviation from the models is observed indicating significant positive enthalpy contribution arising form the size mismatch between Al+3 and Ni+2 ions on the tetrahedral site and Al+3, Ni+2 and Cr+3 on the octahedral site. Variation of the oxygen potential for threephase equilibrium involving metallic nickel, spinet solid solution and corundum solid solution is computed as a function of composition of the solid solutions at 1373 K. The oxygen potential exhibits a minimum at aluminum cationic fraction eta(Al)/(eta(Al) + eta(Cr)) = 0.524 in the oxide solid solutions.
Resumo:
A central composite rotatable experimental design was constructed for a statistical study of the ethylation of benzene in the liquid phase, with aluminum chloride catalyst, in an agitated tank system. The conversion of benzene and ethylene and the yield of monoethyl- and diethylbenzene are characterized by the response surface technique. In the experimental range studied, agitation rate has no significant effect. Catalyst concentration, rate of ethylene Flow, and temperature are the influential factors. The response surfaces may be adequately approximated by planes.
Resumo:
The development of a dispenser type of ion emitter is described. This type of ion emitter has been used successfully for obtaining lead, aluminum, and tin ions.
Resumo:
Peroxydisulfuric acid oxidation of testosterone propionate, progesterone, and cholest-4-en-3-one has been shown to yield 3-oxo-17β-hydroxy-4-oxa-5α-androstane (I, after saponification), 3,20-dioxo-4-oxa-5α-pregnane (V) and 3-oxo-4-oxa-5α-cholestane (VII) respectively. Boron trifluoride etherate-lithium aluminum hydride reduction of δ-lactones I, V, and VII led to the corresponding tetrahydropyran derivatives (IIb, VIa, and VIII). Similar reduction of 3β-hydroxy-17-oxo-17a-oxa-D-homo-5α-androstane (XI) gave 3β-hydroxy-17a-oxa-D-homo-5α-androstane (XIIa). Diborane-boron trifluoride etherate was also found to reduce lactones to cyclic ethers, while reduction with diborane gave hemiacetals. Evidence in support of the structures and stereochemistry assigned to the lactones and their unusual reduction products has been summarized. A tentative mechanism is proposed for lactone → ether reduction employing diborane-boron trifluoride etherate.
Resumo:
Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.
Resumo:
The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.
Resumo:
Preparation of Rb-beta -alumina was realized by the gel-to-crystallite conversion method. Reaction of hydrated aluminum hydroxide gel with RbOH in ethanol medium gave rise to the Rb+-inserted pseudoboehmite precursor under wet chemical conditions. The thermal decomposition of the precursor yielded Rb-beta -alumina. The Rb2O:Al2O3 ratio of monophasic Rb-beta -alumina ranged from 1:10 to 1:22. The extended stability in the compositional range is due to the fact that the conduction planes containing Rb+ and O2- ions can have lower occupancy of Rb+ ions for larger sized alkali ions, permitting the steric separation of the adjoining spinel blocks. High-resolution electron microscopy revealed that the decreasing occupancy of alkali ions in the conduction plane is balanced by changing widths of spinel blocks arising from the shift of tetrahedral Al3+ ions to octahedral sites and an accompanying increase in stacking defects. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
An ammonia loop heat pipe (LHP) with a flat plate evaporator is developed and tested. The device uses a nickel wick encased in an aluminum-stainless steel casing. The loop is tested for various heat loads and different sink temperatures, and it demonstrated reliable startup characteristics. Results with the analysis of the experimental observation indicate that the conductance between the compensation chamber and the heater plate can significantly influence the operating temperatures of the LHP. A mathematical model is also presented which is validated against the experimental observations.
Resumo:
Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.
Resumo:
The formation and decomposition of quasicrystalline and crystalline phases in as-rapidly solidified and annealed commercial AISI 2024 aluminum alloy containing 2 wt% Li have been investigated by detailed transmission electron microscopy, including a combination of bright field and dark field imaging, selected area diffraction pattern analysis and energy dispersive X-ray microanalysis. The microstructure of as-melt spun 2024-2Li consists of alpha-Al cells, containing small coherent delta' precipitates, and particles or a continuous network of the icosahedral phase at the cell boundaries. After annealing at 300-degrees-C, the intercellular particles of the icosahedral phase coarsen progressively and assume a more faceted shape; after annealing at 400-degrees-C, particles of the decagonal and crystalline O phases precipitate heterogeneously on preexisting particles of the icosahedral phase; and after annealling at 500-degrees-C, the icosahedral and decagonal phases dissolve completely, and small particles of the crystalline O phase remain together with newly precipitated plates of the T1 phase. The icosahedral phase in melt spun and melt spun/annealed 2024-2Li belongs to the Al6CuLi3 class of icosahedral phases, with a quasilattice constant of 0.51 nm, a stoichiometry of (Al, Si)6(Cu, Mn, Fe) (Li, Mg)3 and an average composition of Al-24.1 at.% Cu-6.4 at.% Mg-1.7 at.% Si-0.3 at.% Mn-0.5 at.% Fe as-melt spun and Al-21.9 at.% Cu-6.3 at.% Mg-1.0 at.% Si-0.5 at.% Fe as-heat-treated. The decagonal phase in melt spun/annealed 2024-2Li belongs to the Al4Mn class of decagonal phases, with a periodicity of 1.23 nm along the 10-fold symmetry axis, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-10.3 at.% Cu-13.8 at.% Mn-2.3 at.% Fe. The crystalline O phase in melt spun/annealed 2024-2Li has an orthorhombic structure with lattice parameters of a = 2.24 nm, b = 2.35 nm and c = 1.23 nm, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-11.0 at.% Cu-14.8 at.% Mn-3.9 at.% Fe. Detailed analysis of selected area diffraction patterns shows a close similarity between the icosahedral, decagonal and crystalline O phases in melt spun and melt spun/annealed 2024-2Li. In particular, the decagonal phase and crystalline O phases have a similar composition, and exhibit an orientation relationship which can be expressed as: [GRAPHICS] suggesting that the orthorhombic O phase is an approximant structure for the decagonal phase.
Resumo:
Pure silicon tetrafluoride can be prepared in 66% yield from silicon tetrachloride by refluxing with lead fluoride in acetonitrile. The gas can be reduced to pure silane by lithium aluminum hydride in diethyl ether.