380 resultados para Zero-Dimensional Spaces
Resumo:
In this paper the kinematics of a curved shock of arbitrary strength has been discussed using the theory of generalised functions. This is the extension of Moslov’s work where he has considered isentropic flow even across the shock. The condition for a nontrivial jump in the flow variables gives the shock manifold equation (sme). An equation for the rate of change of shock strength along the shock rays (defined as the characteristics of the sme) has been obtained. This exact result is then compared with the approximate result of shock dynamics derived by Whitham. The comparison shows that the approximate equations of shock dynamics deviate considerably from the exact equations derived here. In the last section we have derived the conservation form of our shock dynamic equations. These conservation forms would be very useful in numerical computations as it would allow us to derive difference schemes for which it would not be necessary to fit the shock-shock explicitly.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
The Inönü-Wigner contractions which interrelate the Lie algebras of the isometry groups of metric spaces are discussed with reference to deformations of the absolutes of the spaces. A general formula is derived for the Lie algebra commutation relations of the isometry group for anyN-dimensional metric space. These ideas are illustrated by a discussion of important particular cases, which interrelate the four-dimensional de Sitter, Poincaré, and Galilean groups.
Resumo:
The aim of this investigation is to evolve a method of solving two-dimensional unsteady flow problems by the method of characteristics. This involves the reduction of the given system of equations to an equivalent system where only interior derivatives occur on a characteristic surface. From this system, four special bicharacteristic directional derivatives are chosen. A finite difference scheme is prescribed for solving the equations. General rectangular lattices are also considered. As an example, we investigate the propagation of an initial pressure distribution in a medium at rest.
Resumo:
The velocity ratio algorithm developed from a heuristic study of transfer matrix multiplication has been employed to bring out the relative effects of the elements constituting a linear, one-dimensional acoustic filter, the overall dimensions of which are fixed, and synthesize a suitable straight-through configuration for a low-pass, wide-band, non-dissipative acoustic filter. The potential of the foregoing approach in applications to the rational design of practical acoustic filters such as automotive mufflers is indicated.
Resumo:
Abstract is not available.
Resumo:
A new set of equations describing completely the optical phenomena in a model involving continuous rotation of secondary axes and secondary principal-stress differences are obtained. These are solved by Peano-Baker method using experimentally determined characteristic parameters for several wavelengths of light. Experimental verifications are obtained for a rectangular bar subjected to combined torsion and tension. Paper was presented at Third SESA International Congress on Experimental Mechanics held in Los Angeles, CA on May 13–18, 1973.
Resumo:
A method is presented to obtain stresses and displacements in rotating disks by taking into account the effect of out-of-plane restraint conditions at the hub. The stresses and displacements are obtained in a non-dimensional form, presented in the form of graphs and compared with the generalized plane stress solution.
Resumo:
A new set of equations describing completely the optical phenomena in a model involving continuous rotation of secondary axes and secondary principal-stress differences are obtained. These are solved by Peano-Baker method using experimentally determined characteristic parameters for several wavelengths of light. Experimental verifications are obtained for a rectangular bar subjected to combined torsion and tension.
Resumo:
A method is presented to obtain stresses and displacements in rotating disks by taking into account the effect of out-of-plane restraint conditions at the hub. The stresses and displacements are obtained in a non-dimensional form, presented in the form of graphs and compared with the generalized plane stress solution.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation 1 and principal axis at azimuth 1, and a pure rotator of power 2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters
Resumo:
A numerical procedure, based on the parametric differentiation and implicit finite difference scheme, has been developed for a class of problems in the boundary-layer theory for saddle-point regions. Here, the results are presented for the case of a three-dimensional stagnation-point flow with massive blowing. The method compares very well with other methods for particular cases (zero or small mass blowing). Results emphasize that the present numerical procedure is well suited for the solution of saddle-point flows with massive blowing, which could not be solved by other methods.
Resumo:
In two dimensional (2D) gas-liquid systems, the reported simulation values of line tension are known to disagree with the existing theoretical estimates. We find that while the simulation erred in truncating the range of the interaction potential, and as a result grossly underestimated the actual value, the earlier theoretical calculation was also limited by several approximations. When both the simulation and the theory are improved, we find that the estimate of line tension is in better agreement with each other. The small value of surface tension suggests increased influence of noncircular clusters in 2D gas-liquid nucleation, as indeed observed in a recent simulation.