173 resultados para Xanthomonas axonopodis pv. phaseoli
Resumo:
The modes of binding of Gp(2',5')A, Gp(2',5')C, Gp(2',5')G and Gp(2',5')U to RNase T1 have been determined by computer modelling studies. All these dinucleoside phosphates assume extended conformations in the active site leading to better interactions with the enzyme. The 5'-terminal guanine of all these ligands is placed in the primary base binding site of the enzyme in an orientation similar to that of 2'-GMP in the RNase T1-2'-GMP complex. The 2'-terminal purines are placed close to the hydrophobic pocket formed by the residues Gly71, Ser72, Pro73 and Gly74 which occur in a loop region. However, the orientation of the 2'-terminal pyrimidines is different from that of 2'-terminal purines. This perhaps explains the higher binding affinity of the 2',5'-linked guanine dinucleoside phosphates with 2'-terminal purines than those with 2'-terminal pyrimidines. A comparison of the binding of the guanine dinucleoside phosphates with 2',5'- and 3',5'-linkages suggests significant differences in the ribose pucker and hydrogen bonding interactions between the catalytic residues and the bound nucleoside phosphate implying that 2',5'-linked dinucleoside phosphates may not be the ideal ligands to probe the role of the catalytic amino acid residues. A change in the amino acid sequence in the surface loop region formed by the residues Gly71 to Gly74 drastically affects the conformation of the base binding subsite, and this may account for the inactivity of the enzyme with altered sequence i.e., with Pro, Gly and Ser at positions 71 to 73 respectively. These results thus suggest that in addition to recognition and catalytic sites, interactions at the loop regions which constitute the subsite for base binding are also crucial in determining the substrate specificity.
Resumo:
Low interlaminar strength and the consequent possibility of interlaminar failures in composite laminates demand an examination of interlaminar stresses and/or strains to ensure their satisfactory performance. As a first approximation, these stresses can be obtained from thickness-wise integration of ply equilibrium equations using in-plane stresses from the classical laminated plate theory. Implementation of this approach in the finite element form requires evaluation of third and fourth order derivatives of the displacement functions in an element. Hence, a high precision element developed by Jayachandrabose and Kirkhope (1985) is used here and the required derivatives are obtained in two ways. (i) from direct differentiation of element shape functions; and (ii) by adapting a finite difference technique applied to the nodal strains and curvatures obtained from the finite element analysis. Numerical results obtained for a three-layered symmetric and a two-layered asymmetric laminate show that the second scheme is quite effective compared to the first scheme particularly for the case of asymmetric laminates.
Resumo:
The major heat-stable shrimp allergen (designated as Sa-II), capable of provoking IgE-mediated immediate type hypersensitivity reactions after the ingestion of cooked shrimp, has been shown to be a 34-kDa heat- stable protein containing 300 amino acid residues. Here, we report that a comparison of amino acid sequences of different peptides generated by proteolysis of Sa-II revealed an 86% homology with tropomyosin from Drosophila melanogaster, suggesting that Sa-II could be the shrimp muscle protein tropomyosin. To establish that Sa-II is indeed tropomyosin, the latter was isolated from uncooked shrimp (Penaeus indicus) and its physicochemical and immunochemical properties were compared with those of Sa-II. Both tropomyosin and Sa-II had the same molecular mass and focused in the isoelectric pH range of 4.8 to 5.4. In the presence of 6 M urea, the mobility of both Sa-II and shrimp tropomyosin shifted to give an apparent molecular mass of 50 kDa, which is a characteristic property of tropomyosins. Shrimp tropomyosin bound to specific IgE antibodies in the sera of shrimp-sensitive patients as assessed by competitive ELISA inhibition and Western blot analysis. Tryptic maps of both Sa-II and tropomyosin as obtained by reverse phase HPLC were superimposable. Dot-blot and competitive ELISA inhibition using sera of shrimp-sensitive patients revealed that antigenic as well as allergenic activities were associated with two peptide fractions. These IgE-binding tryptic peptides were purified and sequenced. Mouse anti-anti-idiotypic antibodies raised against Sa-II specific human idiotypic antibodies recognized not only tropomyosin but also the two allergenic peptides, thus suggesting that these peptides represent the major IgE binding epitopes of tropomyosin. A comparison of the amino acid sequence of shrimp tropomyosin in the region of IgE binding epitopes (residues 50-66 and 153-161) with the corresponding regions of tropomyosins from different vertebrates confirmed lack of allergenic cross-reactivity between tropomyosins from phylogenetically distinct species.
Resumo:
After ensilation, the toxic Compositae weed Parthenium hysterophorus was devoid of the toxic principle parthenin. Laboratory-scale ensilation indicated that no parthenin was detectable after 5 wk of anaerobic fermentation. For animal feeding studies, silage was made on a large scale from Parthenium mixed with maize or from Parthenium alone. Crossbred bull and buffalo bull calves were fed diets containing the silages, or control diet without silage, for 12 wk. The animals consumed both silages with relish, and body weight gains of silage-fed calves did not differ from those of the controls. The digestibilities of dry matter, fibre and nitrogen-free extract were greater with the control diet, but the biological value of proteins tended to be greater with the silage-containing diets. Haematological studies indicated no significant differences between experimental and control groups in selected parameters, except for a reduction in blood urea nitrogen in the animals fed silage. The possible causes for these biochemical alterations are discussed. Since the nutritive value of Parthenium silage compares favourably with the standard diet, and Parthenium seeds collected from the silage did not germinate, we suggest that ensilation can be used as an additional method in the containment and eradication of these plants, which grow wild in India.
Resumo:
A standardized in-house reference extract from the pollen of Parthenium hysterophorus, which is responsible for the high incidence of allergic rhinitis in India, was generated and examined by skin test, radio-allergosorbent test inhibition and isoelectric focusing. Parthenium reference allergen discs and positive reference serum were also generated. These reference reagents could not only be used for the quantitation of Parthenium-specific IgE in the sera of rhinitis patients but also for the evaluation of allergenic activity (relative potency and lot-to-lot variation) of different batches of Parthenium pollen.
Resumo:
In this paper, the effect of phosphate anion adsorption on the permeability values of homoionized kaolinite and montmorillonite clays is presented. The homoionized sodium, calcium and hydrogen clays are prepared by repeatedly washing the clays with 2N solutions of corresponding chlorides. Phosphate adsorption was induced by treating homoionized clays with phosphoric acids for different periods varying upto 1000 hrs. The coefficient of permeability of the clays was determined from one dimensional consolidation test results. The decrease in the permeability of kaolinite clays on phosphate adsorption has been explained on the fabric changes. For montmorillonite, both cation exchange and phosphate adsorption causes significant changes which are explained based on variation in the thickness of diffuse double layer.
Resumo:
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.
Resumo:
The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.
Resumo:
This paper deals with the use of Stem theory as applied to a clay-water electrolyte system, which is more realistic to understand the force system at micro level man the Gouy-Chapman theory. The influence of the Stern layer on potential-distance relationship has been presented quantitatively for certain specified clay-water systems and the results are compared with the Gouy-Chapman model. A detailed parametric study concerning the number of adsorption spots on the clay platelet, the thickness of the Stern layer, specific adsorption potential and the value of dielectric constant of the pore fluid in the Stern layer, was carried out. This study investigates that the potential obtained at any distance using the Stern theory is higher than that obtained by the Gouy-Chapman theory. The hydrated size of the ion is found to have a significant influence on the potential-distance relationship for a given clay, pore fluid characteristics and valence of the exchangeable ion.
Resumo:
The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.
Resumo:
This study concerns the effect of duration of load increment (up to 24 h) on the consolidation properties of expansive black cotton soil (liquid limit = 81%) and nonexpansive kaolinite (liquid limit = 49%). It indicates that the amount and rate of compression are not noticeably affected by the duration of loading for a standard sample of 25 mm in height and 76.2 mm in diameter with double drainage. Hence, the compression index and coefficient of consolidation can be obtained with reasonable accuracy even if the duration of each load increment is as short as 4 h. The secondary compression coefficient (C-alpha epsilon) for kaolinite can be obtained for any pressure range with 1/2 h of loading, which, however, requires 4 h for black cotton soil. This is because primary consolidation is completed early in the case of kaolinite. The paper proves that the conventional consolidation test can be carried out with much shorter duration of loading (less than 4 h) than the standard specification of 24 h or more even for remolded fine-grained soils.
Resumo:
Abundant quantities of fly ash have been produced by thermal power plants situated ail over the world. Many applications of fly ash depend upon its pozzolanic reactivity. This reactivity depends upon many factors, including lime content. Many fly ashes show marked improvement with the addition of lime. However, for every fly ash, there is an optimum lime content for its maximum reactivity. There is no well-established simple test to determine the optimum lime content. In this paper an attempt is made to use a simple physical and physico chemical test to determine the optimum lime content. The principle behind the use of a pH test, liquid limit test, and free swell index test to determine the optimum lime content has been explained. All the methods predict nearly the same optimum lime content and correlate well with that determined by the strength test.
Resumo:
Large amplitude stationary Rossby wave trains with wavelength in the range 50 degrees to 60 degrees longitude have been identified in the upper troposphere during May, through the analysis of 200 hPa wind anomalies. The spatial phase of these waves has been shown to differ by about 20 degrees of longitude between the dry and wet Indian monsoon years. It has been shown empirically that the Rossby waves are induced by the heat sources in the ITCZ. These heat sources appear in the Bay of Bengal and adjoining regions in May just prior to the onset of the Indian summer monsoon. The inter-annual spatial phase shift of the Rossby waves has been shown to be related to the shift in the deep convection in the zonal direction.
Resumo:
Double hydroxides of the formula, Ni1-xZn2x (OH)(2) (CO3)(x). nH(2)O (x = 0.1 to 0.25) having the same structure as that of alpha-nickel hydroxide have been synthesized by partial substitution of zinc for nickel. The hydroxide having the composition x = 0.25 exhibits prolonged stability in 6 M KOH. Pasted electrodes comprising this material are rechargeable with a stabilized reversible discharge capacity of 410 +/- 15 mAh g(-1) of nickel even under suboptimal conditions of electrode fabrication. This compares favorably with the capacity values achieved for beta-nickel hydroxide (221 mAh g(-1)', This work; 297 mAh g(-1), Delahaye-Vidal and Figlarz;(1) 456 mAh g(-1), theoretical). (C) 1999 The Electrochemical Society. S0013-4651(98)01-071-4. All rights reserved.