112 resultados para Wind velocity
Resumo:
This paper deals with line protection challenges experienced in system having substantial wind generation penetration. Two types of WTGU: Doubly Fed (DFIG) and Squirrel Cage (SCIG) Induction Generators are simulated and connected to grid with single circuit transmission line. The paper summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults. The results are also compared with systems having conventional synchronous machine connected to the grid.
Resumo:
Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.
Resumo:
On the backdrop of climate change scenario, there is emphasis on controlling emission of greenhouse gases such as CO2. Major thrust being seen worldwide as well as in India is for generation of electricity from renewable sources like solar and wind. Chitradurga area of Karnataka is identified as a suitable location for the production of electricity from wind turbines because of high wind-energy resource. The power generated and the performance of 18 wind turbines located in this region are studied based on the actual field data collected over the past seven years. Our study shows a good prospect for expansion of power production using wind turbines.
Resumo:
Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements.
Resumo:
Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30 degrees apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.
Resumo:
We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of three-dimensional Hall-magnetohydrodynamic, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.
Resumo:
Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.
Resumo:
In this study the cooling performance due to air flow and aerodynamics of the Formula Student open wheeled race car has been investigated and optimized with the help of CFD simulations and experimental validation. The race car in context previously suffered from overheating problems. Flow analysis was carried out based on the detailed race car 3D model (NITK Racing 2012 formula student race car). Wind tunnel experiments were carried out on the same. The results obtained from the computer simulations are compared with experimental results obtained from wind tunnel testing of the full car. Through this study it was possible to locate the problem areas and hence choose the best configuration for the cooling duct. The CFD analysis helped in calculating the mass flow rate, pressure and velocity distribution for different velocities of the car which is then used to determine the heat dissipated by the radiator. Area of flow separation could be visualized and made sure smooth airflow into the radiator core area. This significantly increased the cooling performance of the car with reduction in drag.
Resumo:
A colloid supported against gravitational settling by means of an imposed electric field behaves, on average, as if it is at equilibrium in a confining potential T. M. Squires, J. Fluid Mech. 443, 403 (2001)]. We show, however, that the effective Langevin equation for the colloid contains a nonequilibrium noise source, proportional to the field, arising from the thermal motion of dissolved ions. The position fluctuations of the colloid show strong, experimentally testable signatures of nonequilibrium behavior, including a highly anisotropic, frequency-dependent ``effective temperature'' obtained from the fluctuation-dissipation ratio.
Resumo:
This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.
Resumo:
This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-state stability limit, which is undesirable. This necessitates proper coordination of reactive power output of wind generators with other reactive power controllers in the grid. This paper presents a trust region framework for coordinating reactive output of wind generators-with other reactive sources for voltage stability enhancement. Case studies on 418-bus equivalent system of Indian southern grid indicates the effectiveness of proposed methodology in enhancing the steady-state voltage stability margin.
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
Mode I fracture experiments were conducted on brittle bulk metallic glass (BMG) samples and the fracture surface features were analyzed in detail to understand the underlying physical processes. Wollner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity is similar to 800 m s(-1), which corresponds to similar to 0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny-shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs is stress-controlled and occurs through hydrostatic stress-assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of similar to 79 nm. Juxtaposition of the crack velocity with this spacing suggests that the crack takes similar to 10(-10) s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, is utilized to critically discuss possible causes for the nanocorrugation formation. Taylor's fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.
Resumo:
We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an ``engineered'' initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.