116 resultados para Weighted graphs
Resumo:
Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.
Resumo:
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. In our research, ten experimental studies are conducted to find out how designers synthesize solution concepts for multi-state mechanical devices. The designers are asked to think aloud, while carrying out the synthesis. These design synthesis processes are video recorded. It has been found that modification of kinematic pairs and mechanisms is the major activity carried out by all the designers. This paper presents an analysis of these synthesis processes using configuration space and topology graph to identify and classify the types of modifications that take place. Understanding of these modification processes and the context in which they happened is crucial to develop a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives.
Resumo:
The product dimension of a graph G is defined as the minimum natural number l such that G is an induced subgraph of a direct product of l complete graphs. In this paper we study the product dimension of forests, bounded treewidth graphs and k-degenerate graphs. We show that every forest on n vertices has product dimension at most 1.441 log n + 3. This improves the best known upper bound of 3 log n for the same due to Poljak and Pultr. The technique used in arriving at the above bound is extended and combined with a well-known result on the existence of orthogonal Latin squares to show that every graph on n vertices with treewidth at most t has product dimension at most (t + 2) (log n + 1). We also show that every k-degenerate graph on n vertices has product dimension at most inverted right perpendicular5.545 k log ninverted left perpendicular + 1. This improves the upper bound of 32 k log n for the same by Eaton and Rodl.
Resumo:
A rainbow colouring of a connected graph is a colouring of the edges of the graph, such that every pair of vertices is connected by at least one path in which no two edges are coloured the same. Such a colouring using minimum possible number of colours is called an optimal rainbow colouring, and the minimum number of colours required is called the rainbow connection number of the graph. A Chordal Graph is a graph in which every cycle of length more than 3 has a chord. A Split Graph is a chordal graph whose vertices can be partitioned into a clique and an independent set. A threshold graph is a split graph in which the neighbourhoods of the independent set vertices form a linear order under set inclusion. In this article, we show the following: 1. The problem of deciding whether a graph can be rainbow coloured using 3 colours remains NP-complete even when restricted to the class of split graphs. However, any split graph can be rainbow coloured in linear time using at most one more colour than the optimum. 2. For every integer k ≥ 3, the problem of deciding whether a graph can be rainbow coloured using k colours remains NP-complete even when restricted to the class of chordal graphs. 3. For every positive integer k, threshold graphs with rainbow connection number k can be characterised based on their degree sequence alone. Further, we can optimally rainbow colour a threshold graph in linear time.
Resumo:
Motivated by the observation that communities in real world social networks form due to actions of rational individuals in networks, we propose a novel game theory inspired algorithm to determine communities in networks. The algorithm is decentralized and only uses local information at each node. We show the efficacy of the proposed algorithm through extensive experimentation on several real world social network data sets.
Resumo:
Delaunay and Gabriel graphs are widely studied geo-metric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Lo-cally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Gener-alized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge is necessarily in-cluded or excluded. This property allows us to choose an LGG/GLGG that optimizes a parameter of interest in the graph. We show that computing an edge max-imum GLGG for a given problem instance is NP-hard and also APX-hard. We also show that computing an LGG on a given point set with dilation ≤k is NP-hard. Finally, we give an algorithm to verify whether a given geometric graph G= (V, E) is a valid LGG.
Resumo:
A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family of kernel functions includes the Szego and the Bergman kernel on the symmetrized polydisc.
Resumo:
Let k be an integer and k >= 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G m is chordal then so is G(m+2). Brandst `` adt et al. in Andreas Brandsadt, Van Bang Le, and Thomas Szymczak. Duchet- type theorems for powers of HHD- free graphs. Discrete Mathematics, 177(1- 3): 9- 16, 1997.] showed that if G m is k - chordal, then so is G(m+2). Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m - th bipartite power G(m]) of a bipartite graph G is the bipartite graph obtained from G by adding edges (u; v) where d G (u; v) is odd and less than or equal to m. Note that G(m]) = G(m+1]) for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G m], where k, m are positive integers with k >= 4
Resumo:
Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.
Minimizing total weighted tardiness on heterogeneous batch processors with incompatible job families
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted tardiness. The background for the paper is derived from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real-life scenarios like unequal release times, incompatible job families, nonidentical job sizes, heterogeneous batch processors, and allowance for job splitting have been considered. We have developed a mathematical model which takes into account dynamic starting conditions. The problem considered in this study is NP-hard in nature, and hence heuristic algorithms have been proposed to address it. For real-life large-size problems, the performance of the proposed heuristic algorithms is evaluated using the method of estimated optimal solution available in literature. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal statistically estimated solutions in very reasonable computational time.
Resumo:
Metabolism is a defining feature of life, and its study is important to understand how a cell works, alterations that lead to disease and for applications in drug discovery. From a systems perspective, metabolism can be represented as a network that captures all the metabolites as nodes and the inter-conversions among pairs of them as edges. Such an abstraction enables the networks to be studied by applying graph theory, particularly, to infer the flow of chemical information in the networks by identifying relevant metabolic pathways. In this study, different weighting schemes are used to illustrate that appropriately weighted networks can capture the quantitative cellular dynamics quite accurately. Thus, the networks now combine the elegance and simplicity of representation of the system and ease of analysing metabolic graphs. Metabolic routes or paths determined by this therefore are likely to be more biologically meaningful. The usefulness of the approach is demonstrated with two examples, first for understanding bacterial stress response and second for studying metabolic alterations that occurs in cancer cells.
Resumo:
The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add edges to G to get a supergraph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p). This settles an open problem raised by Biedl 1], in the context of computing minimum height planar straight line drawings of outerplanar graphs, with their vertices placed on a two-dimensional grid. In conjunction with the result of this paper, the constant factor approximation algorithm for this problem obtained by Biedl 1] for 2-vertex-connected outerplanar graphs will work for all outer planar graphs. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.
Resumo:
The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked in the context of induced geometric objects, often turns out to be exactly the vertex cover problem on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon. We consider the problem of hitting all axis-parallel slabs induced by a point set P, and show that it is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths. We show the latter problem to be NP-complete, and also give an algorithm to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is 1.2637(k) n(O(1)).